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Abstract 

 

In this paper, a new stochastic optimizer, which is called slime mould algorithm (SMA), is proposed 

based upon the oscillation mode of slime mould in nature. The proposed SMA has several new 

features with a unique mathematical model that uses adaptive weights to simulate the process of 

producing positive and negative feedback of the propagation wave of slime mould based on 

bio-oscillator to form the optimal path for connecting food with excellent exploratory ability and 

exploitation propensity. The proposed SMA is compared with up-to-date metaheuristics in an 

extensive set of benchmarks to verify the efficiency. Moreover, four classical engineering structure 

problems are utilized to estimate the efficacy of the algorithm in optimizing engineering problems. 

The results demonstrate that the proposed SMA algorithm benefits from competitive, often 

outstanding performance on different search landscapes. Source codes of SMA are publicly available 

at http://www.alimirjalili.com/SMA.html 
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1 Introduction    

Metaheuristic algorithms (MAs) have become prevalent in many applied disciplines in recent 

decades because of higher performance and lower required computing capacity and time than 

deterministic algorithms in various optimization problems [1]. Simple concepts are required to 

achieve favorable results, and it is facile to transplant to different disciplines. Also, the lack of 

randomness in the later stage of some deterministic algorithm makes it inclined to sink into local 

optimum, and random factors in MAs can make the algorithm search for all optimal solutions in 

search space, thus effectively avoiding local optimum. In linear problems, some gradient descent 

algorithms such as [2] are more efficient than stochastic algorithms for the utilization of gradient 

information. The convergence speed of MAs will be less than gradient descent algorithms and can be 

considered as a drawback. In non-linear problems, however, MAs typically commence the 

optimization process with randomly generated solutions and do not demand gradient information, 

which makes the algorithm eminently suitable for practical problems when the derivative 

information is unknown. In real-world scenarios, the solution space of many problems is often 

indeterminate or infinite. It may be infeasible to find optimal solutions by traversing the solution 

space under current circumstances. MAs detect the proximate optimal solution of the problem by 

sampling the enormous solution space randomly in a certain way, to find or generate better solutions 

for the optimization problem under limited circumstances or computational capacity. 

MAs are typically inspired by real-world phenomena find better heuristic solutions for 

optimization problems by simulating physical rules or biological phenomena. MAs can be divided 

into two main categories: swam-based methods and evolutionary techniques. The first kind mainly 

simulate physical phenomena, apply mathematical rules or methodologies including: Multi-Verse 

Optimizer (MVO) [3], Gravitational Local Search Algorithm (GLSA) [4], Charged System Search 

(CSS) [5], Gravitational Search Algorithm (GSA) [6], Sine Cosine Algorithm (SCA) [7], Simulated 

Annealing (SA) [8], Teaching-Learning-Based Optimization (TLBO) [9], Central Force 

Optimization (CFO) [10] and Tabu Search (TS) [11]. Nature-inspired methods mainly include two 

types: evolutionary methods and intelligent swarm techniques. The inspiration of the evolutionary 

algorithm (EA) originates from the process of biological evolution in nature. Compared with the 

traditional optimization algorithm, it is a global optimization method with better robustness and 

applicability.  

Some of the widespread algorithms in the class of EA are Genetic Algorithm (GA) [12], Genetic 

Programming (GP) [13], Evolution Strategy (ES) [14], Evolutionary Programming (EP) [15] and 

Differential Evolution (DE) [16]. The application of ES and EP in scientific research and practical 

problems is also becoming more and more extensive. Swarm Intelligence (SI) [17] includes a 

collective or social intelligence that artificially simulates the decentralization of biological clusters in 

nature or the collective behavior of self-organizing systems. In this class of algorithms, the 

inspiration usually comes from biological groups in nature that have collective behavior and 

intelligence to achieve a certain purpose. In general, SI algorithms are more advantageous than 

evolutionary algorithms because SI algorithms are accessible to appliance than evolutionary 

algorithms with less operators that need to be controlled. Moreover, the SI algorithm has a stronger 

capability to record and utilize historical information than EA. Established and recent algorithms in 

this class are: Particle Swarm Optimization (PSO) [18], Wasp Swarm Optimization (WSO) [19], 

Bat-inspired Algorithm (BA) [20] , Grey Wolf Optimization (GWO) [21], Fruit Fly Optimization 



(FOA) [22] , Moth Flame Optimization (MFO) [23], Ant Colony Optimization (ACO) [24], Harris 

Hawk Optimizer (HHO) [25], and Artificial Bee Colony (ABC) [26]. A schematic design for the 

classification of evolutionary and SI methods are shown in Figure 1. 

 

 

Figure 1 classification of evolutionary and SI methods 

Although different MAs have some distinctness, they all have two identical stages in the search 

gradation: exploration and exploitation [27, 28]. Exploration phase refers to the process of searching 

solution space as widely, randomly, and globally as possible. Exploitation phase refers to the 

competence of the algorithm to search more accurately in the area acquired by the exploration phase, 

and its randomness decreases while its precision increases. When the exploration ability of the 

algorithm is dominant, it can search the solution space more randomly and produce more 

differentiated solution sets to converge fleetly. When the exploitative ability of the algorithm is 

dominant, it searches more locally to enhance the quality and precision of the solution sets. However, 

when the exploration facility is improved, it will lead to reductions in the exploitation capability, and 

vice versa. Another challenge is that the balance of these two abilities is not necessarily identical to 

different problems. Therefore, it is relatively challenging to attain an appropriate balance between 

the two phases that are efficient for all optimization problems.  

Despite the success of conventional and recent MAs, none of them can guarantee finding the 

global optimum for all optimization problems. This has been proven logically the No-Free-Lunch 

(NFL) theory [29]. This theorem motivated numerous researchers to design a new algorithm and 

solve new classes of problems more efficiently. With the aspiration of proposing a more versatile and 

efficient algorithm, this paper introduces a new meta-heuristic algorithm: slime mould algorithm 

(SMA). This method is aroused by the diffusion and foraging conduct of slime mould. An overall set 

of 33 benchmarks and four famous manufacturing design problems has rigorously verified the 

effectiveness and robustness of SMA. 

The remainder of the paper is structured as below. Section 2 illustrated the concept and elicitation 

source of slime mould algorithm, and the mathematical model was established. Section 3 firstly gave 

a qualitative analysis of the algorithm and made a comprehensive comparison of 33 benchmark 



functions, then tested it on four engineering design problems. Section 4 summarized the whole work 

and put forward some inspirations for future work.  

2 Slime mould algorithm 

In this section, the basic concept and conduct of slime mould will be introduced. Then a 

mathematical model inspired by its behavior pattern will be established.  

2.1 Originality  

Before this article, some scholars have proposed similar naming algorithms, but the way of 

designing the algorithm and usage scenarios are quite different from the algorithms proposed in this 

paper. Monismith and Mayfield [30] solves the single-objective optimization problem by simulating 

the five life cycles of amoeda Dictyostelium discoideum: a state of vegetative, aggregatice, mound, 

slug, or dispersal while using ε-ANN to construct an initial position-based mesh. Li et al. [31] 

proposed a method to construct wireless sensor networks by using two forms of slime mould tubular 

networks to correspond to two different regional routing protocols. Qian. et al. [32] combined the 

Physarum network with the ant colony system to improve the algorithm's competence to avoid local 

optimal values to handle the Traveling Salesman Problem better. Inspired by the diffusion of slime 

mould, Schmickland Crailsheim [33] proposed a bio-inspired navigation principle designed for 

swarm robotics. Becker [34] generated inexpensive and fault-tolerant graphs by simulating the 

foraging process of the slime mould Physarum polycephalum. As can be seen from the above 

discussion, most of the modeled slime mould algorithms were used in graph theory and generation 

networks. The algorithm used to optimize the problem [30] simulates the five life cycles of amoeda 

Dictyostelium discoideum, but the experiments and proofs in the article are slightly less. 

The SMA proposed in this paper mainly simulates the behavior and morphological changes of 

slime mould Physarum polycephalum in foraging and does not model its complete life cycle. At the 

same time, the use of weights in SMA is to simulate the positive and negative feedback generated by 

slime mould during foraging, thus forming three different morphotype, is a brand new idea. This 

paper also conducted a full experiment on the characteristics of the algorithm. The results in the next 

sections demonstrate the superiority of the SMA algorithm.  

2.2 Concept and elicitation 

The slime mould mentioned in this article generally refers to Physarum polycephalum. Because it 

was first classified as a fungus, thus it was named "slime mould" whose life cycle was originally 

specified by Howard [35] in a paper published in 1931. Slime mould is a eukaryote that inhabits cool 

and humid places. The main nutritional stage is Plasmodium, the active and dynamic stage of slime 

mould, and also the main research stage of this paper. In this stage, the organic matter in slime mould 

seeks food, surrounds it, and secretes enzymes to digest it. During the migration process, the front 

end extends into a fan-shaped, followed by an interconnected venous network that allows cytoplasm 

to flow inside [36], as shown in Figure 2. Because of their unique pattern and characteristic, they 

can use multiple food sources at the same time to form a venous network connecting them. If there is 

enough food in the environment, slime mould can even grow to more than 900 square centimeters 

[36]. 

Owing to the feature of slime mould can be easily cultured on agar and oatmeal [37], they were 



widely used as model organisms. Kamiya and his colleagues [38] were the first team to study the 

detailed process of the cytoplasmic flow of slime mould. Their work is of great help to our 

subsequent understanding of the way slime mould move and connects food in the environment. We 

now cognize that when a vein approaches a food source, the bio-oscillator produces a propagating 

wave [39] that increases the cytoplasmic flow through the vein, and the faster the cytoplasm flows, 

the thicker the vein. Through this combination of positive-negative feedback, the slime can establish 

the optimal path to connect food in a relatively superior way. Therefore, slime mould was also 

mathematically modeled and applied in graph theory and path networks [40-42]. 

 

Figure 2  Foraging morphology of slime mould 

The venous structure of slime mould develops along with the phase difference of the contraction 

mode [39], so there are three correlations between the morphological changes of the venous structure 

and the contraction mode of slime mould. 

1） Thick veins form roughly along the radius when the contraction frequencies vary from outside 

to inside. 

2）When the contraction mode is unstable, anisotropy begins to appear. 

3）When the contraction pattern of slime mould is no longer ordered with time and space, the 

venous structure is no longer present. 

Therefore, the relationship between venous structure and contraction pattern of slime mould is 

consistent with the shape of naturally formed cells. The thickness of each vein is determined by the 

flow feedback of the cytoplasm in the Physarum solver [43]. The raise in the flow of cytoplasm leads 

to an increase in the diameter of veins. As the flow decreases, the veins contract because of the 

decrease of the diameter. Slime mould can build a stronger route where food concentration is higher, 

thus ensuring that they get the maximum concentration of nutrients. Recent studies have also 



revealed that slime mould have the competence of making foraging arrangements based on 

optimization theory [44]. When the quality of various food sources is different, slime mould can 

choose the food source with the highest concentration. However, slime mould also needs to weigh 

speed and risk in foraging. For instance, slime mould needs to make faster decisions in order to 

avoid environmental damage to them. Experiments have shown that the quicker the decision-making 

speed is, the possibilities of slime mould to find the prime food source is smaller [45]. Therefore, 

when deciding the source of food, slime mould obviously needs to weigh the speed and accuracy. 

Slime mould need to decide when to leave this area and search in another area when foraging. 

When lacking complete information, the best way for a slime mould to estimate when to leave the 

current position is to adopt heuristic or empirical rules based on the insufficient information 

currently available. Experience has shown that when slime mould encounter high-quality food, the 

probability of leaving the area is reduced [46]. However, due to its unique biological characteristics, 

slime mould can utilize a variety of food sources at the same time. Therefore, even if the slime 

mould has found a better source of food, it can still divide a component of the biomass to exploit 

both resources simultaneously when higher quality food is found [43]. 

Slime mould can also dynamically adjust their search patterns according to the quality of foodstuff 

provenience. When the quality of food sources is high, the slime mould will use the region-limited 

search method [47], thus focusing the search on the food sources that have been found. If the 

denseness of the food provenience initially found is low, the slime mould will leave the food source 

to explore other alternative food sources in the region [48]. This adaptive search strategy can be 

more reflected when different quality food blocks are dispersed in a region. Some of the mechanisms 

and characteristics of the slime mould mentioned above will be mathematically modeled in the 

subsequent sections. 

2.3 Mathematical model 

In this part, the mathematical model and method proposed will be described in details. 

2.3.1 Approach food 

Slime mould can approach food according to the odor in the air. To express its approaching behavior 

in mathematical formulas, the following formulas are proposed to imitate the contraction mode: 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ .𝑊⃗⃗⃗ ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗/ , 𝑟 < 𝑝𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝  (2.1) 

where  𝑣𝑏⃗⃗ ⃗⃗  ⃗ is a parameter with a range of ,−𝑎, 𝑎- , 𝑣𝑐⃗⃗⃗⃗  decreases linearly from one to zero.  𝑡 represents the current iteration,  𝑋𝑏⃗⃗ ⃗⃗  ⃗ represents the individual location with the highest odor 

concentration currently found, 𝑋  represents the location of slime mould, 𝑋𝐴⃗⃗ ⃗⃗  and 𝑋𝐵⃗⃗ ⃗⃗   represent two 

individuals randomly selected from slime mould, 𝑊⃗⃗⃗  represents the weight of slime mould. 

The formula of 𝑝 is as follows: 𝑝 = tanh|𝑆(𝑖) − 𝐷𝐹| (2.2) 

where 𝑖 ∈ 1,2,… , 𝑛, 𝑆(𝑖) represents the fitness of 𝑋 , 𝐷𝐹 represents the best fitness obtained in all 

iterations. 

The formula of 𝑣𝑏⃗⃗⃗⃗  is as follows: 𝑣𝑏⃗⃗⃗⃗ = ,−𝑎, 𝑎- (2.3) 



𝑎 = arctanh (−( 𝑡max _𝑡) + 1) (2.4) 

The formula of 𝑊⃗⃗⃗  is listed as follows:   

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {  
  1 + 𝑟 ∙ 𝑙𝑜𝑔 (𝑏𝐹 − 𝑆(𝑖)𝑏𝐹 − 𝑤𝐹 + 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  1 − 𝑟 ∙ 𝑙𝑜𝑔 (𝑏𝐹 − 𝑆(𝑖)𝑏𝐹 − 𝑤𝐹 + 1) , 𝑜𝑡𝑕𝑒𝑟𝑠 (2.5) 

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆) (2.6) 

where 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 indicates that 𝑆(𝑖) ranks first half of the population，𝑟 denotes the random value 

in the interval of ,0,1-，𝑏𝐹 denotes the optimal fitness obtained in the current iterative process, 𝑤𝐹 denotes the worst fitness value obtained in the iterative process currently, 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 denotes 

the sequence of fitness values sorted(ascends in the minimum value problem). 

Figure 3 visualizes the effects of Eq. (2.1). The location of searching individual 𝑋  can be 

updated according to the best location 𝑋𝑏⃗⃗ ⃗⃗  currently obtained, and the fine-tuning of parameters 𝑣𝑏⃗⃗⃗⃗ , 𝑣𝑐⃗⃗⃗⃗  and 𝑊⃗⃗⃗  can change the location of the individual. Figure 3 is also used to illustrate the position 

change of the searching individual in three-dimensional space. 𝑟𝑎𝑛𝑑 in the formula can make 

individuals form search vectors at any angle, that is, search solution space in any direction, so that 

the algorithm has the possibility of finding the optimum solution. Therefore, Eq. (2.1) enables the 

searching individual to search in all possible directions near the optimal solution, thus simulating the 

circular sector structure of slime mould when approaching food. It is also applicable to extend this 

concept to Hyper-dimensional space. 

 

Figure 3 Possible locations in 2-dimention and 3-dimention 

 



 

Figure 4 Assessment of fitness 

2.3.2 Wrap food 

This part simulates the contraction mode of venous tissue structure of slime mould mathematically 

when searching. The higher the concentration of food contacted by the vein, the stronger the wave 

generated by the bio-oscillator, the faster the cytoplasm flows, and the thicker the vein. Eq. (2.5) 

mathematically simulated the positive and negative feedback between the vein width of the slime 

mould and the food concentration that was explored. The component 𝑟 in Eq. (2.5) simulates the 

uncertainty of venous contraction mode. 𝑙𝑜𝑔 is used to alleviate the change rate of numerical value 

so that the value of contraction frequency does not change too much. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 simulates the slime 

mould to adjust their search patterns according to the quality of food. When the food concentration is 

content, the bigger the weight near the region is; when the food concentration is low, the weight of 

the region will be reduced, thus turning to explore other regions. Figure 4 shows the process of 

evaluating fitness values for slime mould. 

Based on the above principle, the mathematical formula for updating the location of slime mould 

is as follows: 

𝑋∗⃗⃗ ⃗⃗ = { 𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧              𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ .𝑊 ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗/ , 𝑟 < 𝑝          𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝                                                          (2.7) 

where 𝐿𝐵 and 𝑈𝐵 denote the lower and upper boundaries of search range, 𝑟𝑎𝑛𝑑 and 𝑟 denote the 

random value in [0,1]. The value of 𝑧 will be discussed in the parameter setting experiment. 

2.3.3 Grabble food 

Slime mould mainly depends on the propagation wave produced by the biological oscillator to 

change the cytoplasmic flow in veins, so that they tend to be in a better position of food 

concentration. On the purpose of simulating the variations of venous width of slime mould, we used 𝑊⃗⃗⃗ , 𝑣𝑏⃗⃗⃗⃗  and 𝑣𝑐⃗⃗⃗⃗  to realize the variations. 𝑊⃗⃗⃗  mathematically simulates the oscillation frequency of slime mould near one at different food 



concentration, so that slime mould can approach food more quickly when they find high-quality food, 

while approach food more slowly when the food concentration is lower in individual position, thus 

improving the efficiency of slime mould in choosing the optimal food source. 

The value of 𝑣𝑏⃗⃗⃗⃗  oscillates randomly between ,−𝑎, 𝑎- and gradually approaches zero as the 

increasement of iterations. The value of 𝑣𝑐⃗⃗⃗⃗  oscillates between [-1,1] and tends to zero eventually. 

The trend of the two values is shown as Figure 5. Synergistic interaction between 𝑣𝑏⃗⃗⃗⃗  and 𝑣𝑐⃗⃗⃗⃗  
mimics the selective behavior of slime mould. In order to find a better source of food, even if slime 

mould has found a better source of food, it will still separate some organic matter for exploring other 

areas in an attempt to find a higher quality source of food, rather than investing all of it in one 

source. 

 

Figure 5 Trends of 𝑣𝑏⃗⃗⃗⃗  and 𝑣𝑐⃗⃗⃗⃗  
Moreover, the oscillation process of 𝑣𝑏⃗⃗⃗⃗  simulates the state of slime mould deciding whether to 

approach the food source or find other food sources. Meanwhile, the process of probing food is not 

smooth. During this period, there may be various obstacles, such as light and dry environment, 

which restrict the spread of slime mould. However, it also improves the possibility of slime mould to 

find higher quality food and evades the trapping of local optimum. 

The pseudo code of the SMA is shown in Algorithm 1. The intuitive and detailed process of SMA 

is shown in Figure 6. 

There are still many mechanisms that can be added to the algorithm, or more comprehensive 

simulation of the life cycle of slime mould. However, to enhance the extensibility of the algorithm, 

we simplify the process and operators of the algorithm, leaving only the simplest algorithm as 

possible. 

 

Algorithm 1 Pseudo-code of SMA 

Initialize the parameters popsize, 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑖𝑡𝑖𝑜𝑛; 

Initialize the positions of slime mould 𝑋𝑖(𝑖 = 1,2,… , 𝑛); 
While (𝑡 ≤ 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑖𝑡𝑖𝑜𝑛) 

Calculate the fitness of all slime mould;          𝑢𝑝𝑑𝑎𝑡𝑒 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠,  𝑋𝑏 

Calculate the W by Eq. (2.5); 



For 𝑒𝑎𝑐𝑕 𝑠𝑒𝑎𝑟𝑐𝑕 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

    𝑢𝑝𝑑𝑎𝑡𝑒 𝑝, 𝑣𝑏, 𝑣𝑐; 
    𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝐄𝐪. (2.7); 
End 𝐅𝐨𝐫 𝑡 = 𝑡 + 1; 

End While 

Return 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠, 𝑋𝑏; 

2.3.4 Computational complexity analysis 

SAM mainly consists of the subsequent components: initialization, fitness evaluation, and sorting, 

weight update, and location update. Among them, N denotes the number of cells of slime mould, D 

denotes the dimension of functions, and T denotes the maximum number of iterations. The 

computation complexity of initialization is 𝛰(𝑁), the computation complexity of fitness evaluation 

and sorting is 𝛰(𝑁 +𝑁 𝑙𝑜𝑔𝑁), the computational complexity of weight update is 𝛰(𝑁 × 𝐷), the 

complexity of location update is 𝛰(𝑁 × 𝐷). Therefore, the total complexity of SMA is 𝛰(𝑁 ∗ (1 +𝑇 ∗ 𝑁 ∗ (1 + 𝑙𝑜𝑔𝑁 + 2 ∗ 𝐷))). 

 

Figure 6 Flowchart of SMA 

3 Experimental results and analyses 

In this sector, we compared the SMA with some competitive MAs in an all-inclusive set of 33 

benchmarks. The experimentations were ran on the operating system of Windows Server 2012 R2 

Datacenter with 128 GB RAM and CPU of Intel (R) Xeon (R) E5-2650 v4 (2.20 GHz). The 

algorithms for comparison were coded by MATLAB R2018b. 

3.1 Qualitative analysis 

The qualitative analysis results of SMA in handling unimodal functions and multimodal functions 

are presented in Figure 7 to intuitively analyze the position and fitness changes of slime mould 

during foraging. The figure is comprised of four concernment indicators: search history, the 

trajectory of the slime mould in the 1st dimension, the average fitness of slime mould, and 

convergence curve. Search history represents the location and distribution of slime mould in the 

iteration process. The trajectory of slime mould reveals the behavior of the position change of slime 

mould in the first part of the first dimension. Average fitness indicates the variation trend of the 



average fitness of the slime mould colony changes with the iteration process. Convergence curve 

shows the optimal fitness value in the slime mould during the iteration process. 

From the search history subplot, the slime mould in different benchmark functions put up a similar 

cross-type search trajectory clustered near the optimal value, thus accurately searching in reliable 

search areas and reflecting fast convergence. Meanwhile, the distribution of slime mould is mainly 

concentrated in multiple regions with local optimum, which shows the tradeoff of slime mould 

between multiple local optimums. 

The trajectory of the first slime mould in the first dimension can be used as a representative of 

other parts of slime mould, revealing the primary exploratory behavior of slime mould. The fast 

oscillation in the prophase and the slight oscillation in the anaphase can ensure the fast convergence 

of slime mould and the accurate search near the optimal solution [49]. As can be perceived from the 

figure, the position curve of slime mould has very large amplitude in the early iteration process, even 

up to 50% of the exploration space. In the later iteration period, if the function is smooth, the 

amplitude of the position of slime mould begins to decrease; if the amplitude of the function changes 

significantly, the position amplitude also changes greatly. This reflects the high adaptability and 

robustness of slime mould in different functions. 

By observing the average fitness curve, the variation tendency of the fitness of slime mould during 

the iterative procedure can be visually observed. Although the average fitness curve of slime mould 

is oscillating, the average fitness value tends to decrease, and the oscillation frequency decreases 

inversely proportional to iterations, thus ensuring the rapid convergence of slime mould in the 

prophase and the precise search in the anaphase. 

Convergence curve reveals the average fitness of the optimal fitness value searched by slime 

mould varies with iterations. By observing the downtrend of the curve, we can observe the 

convergence rate of slime mould and the time when it switches between the exploration and 

exploration gradation. 



 

Figure 7 Qualitative analysis 

3.2 Benchmark function validation 

In this section, SMA was assessed on a comprehensive set of functions from 23 benchmarks and 

CEC 2014. These functions cover unimodal, multimodal, hybrid, and composite functions, as shown 

in Tables 1-3. Some composite functions of CEC 2014 are shown in Figure 8. Dim denotes the 

dimension of function; Range denotes the definition domain of the function, and 𝑓𝑚𝑖𝑛 denotes the 

optimal value of the function. The MAs used for comparison include well-regarded and recent ones: 

WOA [50], GWO [21], MFO [23], BA [20], SCA [7], FA[51], PSO[18], SSA [52], MVO [3], ALO 



[53], PBIL [54], DE [55] and advanced MAs: AGA[56], BLPSO [57], CLPSO [58], CBA [59], 

RCBA [60], CDLOBA [61], m_SCA [62], IWOA [63], LWOA [64], and CSSA [65]. The parameter 

setup of traditional MAs is detailed in Table 4. The parameter selection was based on the parameters 

used by the original author in the article or the parameters widely used by various researchers. 

 

Figure 8 Illustration of CEC 2014 composite functions 

 

Table 1 

Unimodal and multimodal test functions of 23 standard benchmarks 

Functions     Dim Range 𝑓𝑚𝑖𝑛 𝑓 (𝑥) = ∑ 𝑥𝑖 𝑛𝑖         n [-100,100] 0 𝑓 (𝑥) = ∑  𝑥𝑖𝑛𝑖   +∏  𝑥𝑖𝑛𝑖     n [-10,10] 0 𝑓 (𝑥) = ∑ (∑ 𝑥 𝑖   ) 𝑛𝑖    n [-100,100] 0 𝑓 (𝑥) = 𝑚𝑎𝑥𝑖* 𝑥𝑖  ,1 ≤ 𝑖 ≤ 𝑛+ n [-100,100] 0 𝑓 (𝑥) = ∑ ,100(𝑥𝑖  − 𝑥𝑖 ) + (𝑥𝑖 − 1) -𝑛  𝑖    n [-30,30] 0 𝑓 (𝑥) = ∑ (,𝑥𝑖 + 0.5-) 𝑛𝑖    n [-100,100] 0 𝑓 (𝑥) = ∑ 𝑖𝑥𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚,0,1-𝑛𝑖    n [-128,128] 0 𝑓 (𝑥) = ∑ −𝑥𝑖   n(√ 𝑥𝑖  )𝑛𝑖    n [-500,500] -418.9829*n 𝑓 (𝑥) = ∑ ,𝑥𝑖 − 10 co (2 𝑥𝑖) + 10-𝑛𝑖    n [-5.12,5.12] 0 𝑓  (𝑥) = −20 xp (−0.2( 𝑛∑ 𝑥𝑖 𝑛𝑖  ) 0.5) −  xp . 𝑛∑ co (2 𝑥𝑖)𝑛𝑖  / + 20 + 𝑒  n [-32,32] 0 𝑓  (𝑥) =      ∑ 𝑥𝑖 𝑛𝑖  −∏ co .  √𝑖/𝑛𝑖  + 1  n [-600,600] 0 𝑓  (𝑥) =  𝑛 *10   n( 𝑦 ) + ∑ (𝑦𝑖 − 1) ,1 + 10   n ( 𝑦𝑖  )-𝑛  𝑖  + (𝑦𝑛 − 1) + +∑ 𝑢(𝑥𝑖 , 10,100,4)𝑛𝑖  , 𝑦𝑖 = 1 +        

𝑢(𝑥𝑖 , 𝑎,  ,𝑚) = { (𝑥𝑖 − 𝑎)𝑚       𝑥𝑖  𝑎0            − 𝑎 < 𝑥𝑖 < 𝑎 (−𝑥𝑖 − 𝑎)𝑚    𝑥𝑖 < 𝑎  

n [-50,50] 0 

𝑓  (𝑥) = 0.1*  n (3 𝑥 ) +∑ (𝑥𝑖 − 1) ,1 +   n (3 𝑥𝑖 + 1)-𝑛𝑖  + (𝑥𝑛 − 1) ,1 +  n (2 𝑥𝑛)-+ + ∑ 𝑢(𝑥𝑖 , 5,100,4)𝑛𝑖    
n [-50,50] 0 

 

Table 2 

Unimodal and simple multimodal functions of CEC2014 

Functions     Dim Range 𝑓𝑚𝑖𝑛 𝑓  (𝑥) =  otat      h  on  t on       pt c   nct on n [-100,100] 100 𝑓  (𝑥) =  otat     nt    ar   nct on n [-100,100] 200 𝑓  (𝑥) =  h   t   an   otat  (  )  c         nct on n [-100,100] 500 𝑓  (𝑥) =        r tra     nct on n [-100,100] 600 𝑓  (𝑥) =     app  at   nct on n [-100,100] 1300 𝑓  (𝑥) =       at   nct on n [-100,100] 1400 𝑓  (𝑥) =     xpan     r   an    p     o  n roc      nct on n [-100,100] 1500 



𝑓  (𝑥) =     xpan     ca   r    6   nct on n [-100,100] 1600 

 

Table 3  

Hybrid and Composition functions of CEC 2014 

Functions     Dim Range 𝑓𝑚𝑖𝑛 𝑓  (𝑥) =    r     nct on 1  n [-100,100] 1700 𝑓  (𝑥) =    r     nct on 2  n [-100,100] 1800 𝑓  (𝑥) =    r     nct on 3  n [-100,100] 1900 𝑓  (𝑥) =    r     nct on 4  n [-100,100] 2000 𝑓  (𝑥) =    r     nct on 5  n [-100,100] 2100 𝑓  (𝑥) =    r     nct on 6  n [-100,100] 2200 𝑓  (𝑥) =  ompo  t    nct on 1  n [-100,100] 2300 𝑓  (𝑥) =  ompo  t    nct on 2  n [-100,100] 2400 𝑓  (𝑥) =  ompo  t    nct on 3 n [-100,100] 2500 𝑓  (𝑥) =  ompo  t    nct on 4 n [-100,100] 2600 𝑓  (𝑥) =  ompo  t    nct on 5 n [-100,100] 2700 𝑓  (𝑥) =  ompo  t    nct on 6 n [-100,100] 2800 

 

Table 4  

Parameter settings of counterparts 

Algorithm Parameter settings 

WOA 𝑎 = ,2,0-; 𝑎 = ,−2,−1-;  𝑏 = 1  

GWO 𝑎 = ,2,0-  

MFO 𝑏 = 1;  𝑡 = ,−1,1-;  𝑎 ∈ ,−1,−2-  

BA 𝐴 = 0.5;  𝑟 = 0.5  

SCA 𝐴 = 2  

FA 𝛼 = 0.5;  𝛽 = 0.2;  𝛾 = 1  

PSO 𝑐 = 2; 𝑐 = 2;  𝑣𝑀𝑎𝑥 = 6  

SSA 𝑐 ∈ ,0 1-; 𝑐 ∈ ,0 1-;   

MVO 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∈ ,0.2 1-;  𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 ∈ ,0.6 1-  

ALO  = 500  

PBIL 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.05; 𝑒𝑙𝑖𝑡𝑖𝑠𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 1;  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 0  

DE 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.5;  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5  

 

All algorithms were performed under the same conditions to achieve fairness in comparative 

experiments. Among them, the population was set to 30, the dimension and the iteration time was set 

to 30 and 1000 respectively. To reduce the impacts of random factors in the algorithm on the results, 

all the compared algorithms were run individually 30 times in each function and averaged as the 

final running result. On the purpose of measuring experiment results, Standard deviation (STD), 

Average results (AVG) and Median (MED) were employed to evaluate the results. Note that best 

results will be bolded (take one in the case of juxtaposition).  

 



3.2.1 Exploitation competence analysis 

The data in Table 5 demonstrates that SMA ranked first or tied first on average when solving F1-5, 

F7, and F14. The convergence curves of F2 and F5 in Figure 9 can be visually observed that SMA 

has the fastest convergence trend among all the comparative functions. The data in Table 6 

demonstrates that SMA can still exhibit significant advantages even when compared to a modified 

Ma, such as ranking first among other unimodal functions other than F5 and F14. These functions 

are unimodal functions in the benchmarks, reflecting SMA's efficient exploration capability. 

Moreover, in order to more fairly evaluate the local search efficiency of the algorithm, an evaluation 

version of the experiment has been added. The data in Table 7 demonstrate the experimental results 

obtained by 300,000 evaluations of the SMA with 10 other participants on the unimodal functions. In 

the experimental results, the values obtained by SMA were still better than those of other algorithms 

on F1-5 and F7. At the same time, the median values of the solutions were also consistent with the 

ranking of the optimal values, indicating the stability of the SMA. 

 

Table 5  

Comparison results on unimodal functions with traditional algorithms during 1000 iterations 

 F1    F2    F3   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.000000  0.000000  1.08E-64  5.330E-207 0.000000  5.93E-58  0.00000  0.00000  8.22E-02 

SCA 0.015244  0.029989  9.36E+01  1.150E-05 2.743E-05 8.06E-03  3261.99676  2935.03792  2.75E+04 

SSA 1.231E-08 3.536E-09 1.83E+02  0.848146  0.941518  8.90E+00  236.62194  155.54710  2.94E+03 

GWO 4.223E-59 1.081E-58 4.39E-46  1.128E-34 9.149E-35 7.07E-28  4.027E-15 1.418E-14 1.50E-09 

MFO 2000.0006  4068.3807  2.04E+03  33.666839  20.253973  3.42E+01  24900.5554  14138.0477  2.91E+04 

WOA 4.322E-153 2.276E-152 2.34E-54  5.032E-104 1.591E-103 3.42E-34  20802.2782  10554.3925  5.30E+04 

GOA 7.670196  6.676643  1.27E+03  9.540510  14.128406  3.09E+01  1794.1195  1103.3922  7.64E+03 

DA 1158.4940  600.8920  1.19E+03  14.313148  5.649106  1.45E+01  9612.3629  6188.5858  9.64E+03 

ALO 1.050E-05 7.825E-06 7.10E+00  28.698940  42.100743  3.02E+01  1275.7431  596.2918  1.73E+03 

MVO 0.318998  0.112060  9.40E+02  0.388930  0.137834  1.39E+01  48.11246  21.77526  4.61E+03 

PBIL 46908.0000  4218.6045  4.84E+04  95.200000  5.892134  9.80E+01  54824.1 6552.855378 6.02E+04 

PSO 128.803704  15.368375  1.42E+02  86.075426  65.298810  1.12E+02  406.96260  71.30926  6.06E+02 

DE 3.030E-12 3.454E-12 4.01E-04  3.723E-08 1.196E-08 2.24E-03  24230.5748  4174.3788  3.00E+04 

 F4    F5    F6   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 2.301E-197 0.000000  1.31E-25  0.42779  0.63700  9.89E+00  0.000879  0.000415  5.97E-01 

SCA 20.532489  11.046644  7.53E+01  532.7126  1907.4456  1.58E+06  4.550121  0.357049  3.37E+01 

SSA 8.254602  3.287966  1.62E+01  135.5698  174.1213  7.77E+03  0.000000  0.000000  2.04E+02 

GWO 1.776E-14 2.228E-14 9.01E-12  27.10029  0.86432  2.73E+01  0.726058  0.278337  9.75E-01 

MFO 64.420279  8.689356  6.47E+01  5348258  20289785  5.35E+06  1656.708  5277.651  1.68E+03 

WOA 45.706343  26.935040  4.61E+01  27.26543  0.57447  2.73E+01  0.100557  0.110525  1.01E-01 

GOA 12.596514  4.317304  2.35E+01  1631.1583  2241.1368  2.58E+05  4.884661  4.512327  1.36E+03 

DA 23.631736  8.191777  2.37E+01  127371  96386  1.31E+05  1330.292  632.470  1.34E+03 

ALO 12.133214  3.585375  1.32E+01  298.8031  431.1446  5.00E+02  0.000012  0.000011  7.49E+00 

MVO 1.076968  0.310884  1.40E+01  407.9465  615.3290  8.63E+04  0.323756  0.097394  9.34E+02 

PBIL 79.666667  4.088110  8.00E+01  143346156  31547349  1.51E+08  45881.833  4850.932  4.77E+04 

PSO 4.498158  0.329339  4.79E+00  154736  36039  1.85E+05  132.779  15.189  1.45E+02 

DE 1.965929  0.430531  1.32E+01  46.12942  27.29727  1.40E+02  3.096E-12 1.461E-12 4.11E-04 

 F7    F14    F15   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 8.839E-05 7.118E-05 4.08E-04  9549563  6529870  2.97E+07  22233.8245  14144.9575  5.47E+07 



SCA 0.024382  0.020732  6.04E-01  425718766  116756947  7.06E+08  2.689E+10 5.427E+09 3.97E+10 

SSA 0.095541  0.050530  1.59E-01  20297116  8153518  6.91E+07  11222.8121  11173.7583  3.37E+08 

GWO 0.000869  0.000435  1.46E-03  88751868  66700399  1.29E+08  2.254E+09 1.759E+09 3.98E+09 

MFO 4.620163  13.076256  4.77E+00  87010749  137363574  1.00E+08  1.341E+10 7.685E+09 1.35E+10 

WOA 0.000986  0.001147  2.66E-03  160431438  69271930  1.62E+08  2.154E+09 1.086E+09 2.17E+09 

GOA 0.024028  0.011253  2.96E-02  33807500  14819986  1.28E+08  17667580  11032455  2.34E+09 

DA 0.326978  0.138556  3.31E-01  305164519  121919102  3.05E+08  6.363E+09 2.751E+09 6.37E+09 

ALO 0.103373  0.034257  1.06E-01  12505761  5184932  1.69E+07  12378  9058  1.25E+07 

MVO 0.020859  0.009584  1.42E-01  14860094  6244884  5.89E+07  566570  210025  1.45E+09 

PBIL 282.1349  43.2693  2.93E+02  574020990  128317251  7.02E+08  4.961E+10 5.107E+09 5.32E+10 

PSO 111.0068  21.5378  1.11E+02  17174833  5483990  2.16E+07  191733286  23903821  2.09E+08 

DE 0.026937  0.006322  5.44E-02  100597441  31636302  1.78E+08  1601.8022  3314.1727  1.97E+05 

 

Table 6 

Comparison results on the unimodal functions with advanced algorithms 

 F1    F2    F3   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.000000  0.000000  4.72E-37  4.20E-187 0.000000  1.24E-66  0.000000  0.000000  1.19E-02 

BLPSO 2208.3313  397.7883  5.00E+03  17.665054  1.905407  3.35E+01  13540.48  1672.45  1.82E+04 

CLPSO 596.7364  150.3595  5.15E+03  11.846531  1.669288  4.09E+01  16836.42  3085.75  2.71E+04 

CBA 0.113583  0.454545  4.38E-01  305804  1652847  5.73E+05  73.709725  31.029467  2.54E+02 

RCBA 0.201488  0.052889  5.31E-01  10.958358  28.471304  2.77E+01  95.544912  43.376020  7.44E+02 

CDLOBA 0.005957  0.002133  1.88E-02  3781.932  15086.168  1.24E+04  1.791342  6.166318  3.50E+02 

m_SCA 2.521E-46 1.378E-45 8.14E-04  3.478E-33 1.420E-32 2.01E-06  8.991E-16 3.188E-15 5.82E+03 

IWOA 8.130E-146 4.370E-145 1.00E-53  2.385E-102 6.585E-102 1.44E-33  15410.3  7420.1  3.62E+04 

LWOA 6.743E-07 7.589E-07 1.55E-01  2.801E-07 3.833E-07 6.54E-02  43293.10  13505.91  9.25E+04 

CSSA 0.017344  0.027805  1.74E-02  0.061732  0.027609  6.21E-02  2.926441  3.133898  2.95E+00 

 F4    F5    F6   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 8.84E-183 0.00000  1.80E-36  1.27571  4.90297  1.22E+01  0.000880  0.000407  9.26E-01 

BLPSO 27.66310  2.40967  3.54E+01  520889  178483  2.75E+06  2207.564  410.182  5.20E+03 

CLPSO 42.44490  4.41014  5.61E+01  113820  39571  2.95E+06  563.251  138.054  5.26E+03 

CBA 17.03820  7.72324  2.20E+01  197.6163  360.2440  2.58E+02  0.001823  0.007886  1.16E-01 

RCBA 9.00594  3.41186  1.49E+01  148.2466  122.4613  2.29E+02  0.187352  0.054118  4.62E-01 

CDLOBA 46.10460  7.48538  4.81E+01  138.1210  178.6248  2.29E+02  0.005940  0.001899  1.79E-02 

m_SCA 2.248E-13 1.223E-12 1.53E+01  27.62609  0.84321  3.34E+01  2.540097  0.499546  4.06E+00 

IWOA 13.12456  16.19609  2.26E+01  26.57003  0.66075  2.70E+01  0.036361  0.069578  6.17E-02 

LWOA 11.12439  14.63066  2.69E+01  25.63874  6.59153  2.90E+01  0.009637  0.002992  4.25E-01 

CSSA 0.03301  0.01983  3.45E-02  0.17508  0.16603  1.76E-01  0.030982  0.062573  3.11E-02 

 F7    F14    F15   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 8.21E-05 7.16E-05 3.24E-04  9689581  7904687  3.20E+07  15808.97  10533.48  5.40E+07 

BLPSO 0.59346  0.17290  1.50E+00  1.72E+08 3.74E+07 2.98E+08  3.718E+09 5.932E+08 8.78E+09 

CLPSO 0.26201  0.05157  1.74E+00  1.77E+08 6.19E+07 4.28E+08  1.985E+09 4.391E+08 1.47E+10 

CBA 0.47023  0.31242  7.47E-01  1.15E+07 5802441  1.80E+07  513564.79  1056309.50  2.80E+06 

RCBA 0.61360  0.25709  1.02E+00  5943596  2275351  1.06E+07  372942.94  107512.69  8.44E+05 

CDLOBA 26.93780  39.54585  6.71E+01  4469831  2849244  1.07E+07  18462.13  9920.05  3.57E+04 

m_SCA 0.00071  0.00053  2.02E-02  1.15E+08 6.69E+07 3.52E+08  1.048E+10 4.703E+09 2.38E+10 

IWOA 0.00185  0.00236  3.92E-03  9.34E+07 4.72E+07 1.19E+08  1.047E+09 8.576E+08 1.43E+09 

LWOA 0.00650  0.00439  3.44E-02  8.81E+07 3.31E+07 4.11E+08  3.334E+08 1.326E+08 2.21E+10 



CSSA 0.00019  0.00016  6.78E-04  1.68E+09 2.36E+08 1.68E+09  8.837E+10 6.958E+09 8.84E+10 

 

 

Table 7 

Comparison results on unimodal functions during 3E5 evaluations 

 F1    F2    F3   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.00000 0.00000 2.150E-268  0.00000 0.00000 1.999E-141  0.00000 0.00000 7.427E-244 

SCA 5.33E-52 2.92E-51 1.325E-19  3.28E-60 9.54E-60 1.256E-28  2.65E+00 1.03E+01 2.763E+03 

SSA 3.97E-09 7.20E-10 6.629E+01  2.20E-01 5.24E-01 4.818E+00  6.21E-08 1.97E-08 5.697E+02 

GWO 0.00000 0.00000 0.000E+00  0.00000 0.00000 1.002E-286  8.62E-174 0.00000 1.908E-125 

MFO 1.67E+03 3.79E+03 1.667E+03  3.53E+01 2.45E+01 3.533E+01  1.58E+04 1.08E+04 1.579E+04 

WOA 0.00000 0.00000 0.000E+00  0.00000 0.00000 0.000E+00  2.15E+01 5.44E+01 1.755E+03 

GOA 1.37E-03 7.51E-04 7.244E+02  4.93E-01 5.10E-01 1.954E+01  1.15E+02 3.94E+02 2.836E+03 

MVO 3.11E-03 7.04E-04 5.957E+02  3.84E-02 1.30E-02 1.113E+01  3.70E-01 1.10E-01 1.613E+03 

PSO 1.01E+02 1.43E+01 1.113E+02  4.69E+01 3.54E+00 5.156E+01  1.85E+02 2.76E+01 2.205E+02 

DE 1.46E-159 3.86E-159 4.314E-76  2.02E-94 2.33E-94 1.359E-45  1.39E+03 7.73E+02 6.275E+03 

AGA 2.38E-02 2.48E-02 5.567E-02  1.18E-02 3.99E-03 1.701E-02  4.51E-02 4.92E-02 8.333E-02 

 F4    F5    F6   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.00000 0.00000 2.648E-131  2.22E-03 9.67E-04 1.837E-01  9.61E-06 4.23E-06 1.583E-02 

SCA 4.46E-03 1.34E-02 1.490E+01  2.73E+01 6.99E-01 2.793E+01  3.70E+00 2.72E-01 4.367E+00 

SSA 3.72E-01 7.06E-01 7.726E+00  7.27E+01 9.68E+01 2.160E+03  3.86E-09 9.08E-10 6.799E+01 

GWO 1.79E-152 8.68E-152 2.593E-126  2.61E+01 9.13E-01 2.632E+01  4.64E-01 2.81E-01 6.100E-01 

MFO 6.54E+01 1.03E+01 6.536E+01  2.69E+06 1.46E+07 2.686E+06  2.99E+03 7.91E+03 2.990E+03 

WOA 3.68E+00 7.91E+00 4.832E+00  2.44E+01 3.14E-01 2.437E+01  5.89E-06 2.44E-06 5.896E-06 

GOA 2.45E+00 2.03E+00 1.366E+01  1.52E+02 3.50E+02 6.639E+04  1.52E-03 7.49E-04 7.702E+02 

MVO 8.89E-02 3.43E-02 9.891E+00  6.68E+01 9.45E+01 3.591E+04  3.05E-03 7.30E-04 6.130E+02 

PSO 3.81E+00 2.16E-01 3.993E+00  8.98E+04 1.83E+04 1.085E+05  9.85E+01 8.65E+00 1.094E+02 

DE 3.54E-15 5.37E-15 7.076E-07  3.08E+01 1.81E+01 3.259E+01  0.00000 0.00000 0.000E+00 

AGA 3.17E-02 2.19E-02 6.531E-02  5.10E-02 6.04E-02 1.262E-01  1.58E-02 1.69E-02 1.145E-01 

 F7    F14    F15   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 9.53E-06 8.25E-06 5.830E-05  2.15E+06 7.66E+05 9.335E+06  1.09E+04 1.28E+04 5.209E+06 

SCA 2.43E-03 2.30E-03 1.570E-02  2.35E+08 5.63E+07 3.955E+08  1.65E+10 3.59E+09 2.586E+10 

SSA 8.58E-03 4.21E-03 2.034E-02  1.72E+06 6.73E+05 2.440E+07  1.21E+04 9.72E+03 1.130E+08 

GWO 6.07E-05 4.25E-05 9.191E-05  5.78E+07 3.28E+07 8.364E+07  2.18E+09 2.05E+09 3.621E+09 

MFO 3.64E+00 5.34E+00 3.660E+00  9.51E+07 1.18E+08 9.580E+07  1.05E+10 7.21E+09 1.054E+10 

WOA 1.38E-04 1.36E-04 3.663E-04  2.67E+07 1.08E+07 2.686E+07  4.45E+06 7.57E+06 4.481E+06 

GOA 1.70E-03 9.63E-04 2.530E-03  1.31E+07 9.07E+06 4.304E+07  2.27E+07 1.24E+08 1.157E+09 

MVO 2.99E-03 1.04E-03 6.692E-02  2.78E+06 1.07E+06 2.863E+07  1.55E+04 1.05E+04 9.453E+08 

PSO 1.02E+02 2.89E+01 1.022E+02  8.12E+06 2.06E+06 1.019E+07  1.51E+08 1.61E+07 1.643E+08 

DE 2.48E-03 6.04E-04 4.437E-03  2.05E+07 6.27E+06 3.310E+07  8.91E+02 1.81E+03 9.373E+02 

AGA 1.77E-04 1.22E-04 3.056E-04  1.73E+02 8.34E+01 2.952E+02  2.40E+02 5.14E+01 2.971E+02 

 

3.2.2 Exploration competence analysis 

The data in Table 8 represents that SMA is still competitive in multimodal functions. In F8-F11 



and F20-21, the AVG of SMA was the smallest or the smallest in parallel compared with other 

algorithms. From the convergence curves of F8 and F21 in Figure 9, it can be observed that SMA 

can search for the highest accuracy fitness value in these two multimodal functions, while some 

algorithms fail to obtain a superior solution after a certain amount of iterations. This is due to local 

optima stagnation, which illustrates that SMA can still show better exploration ability in case of 

preferable exploration. From the data in Table 9, it can be seen that the results of SMA in F9-F11, 

F17, and F20-21 are optimal, and only slightly lower than other algorithms in F8, F18, and F19, 

which indicates that SMA can still maintain its advantages over advanced algorithms and reflect 

SMA's capability to avoid local optimum solutions. Figure 10 also shows that SMA can find a 

superior solution at a relatively fast convergence tendency in multimodal functions such as F9-11, 

F17, and F21. Table 10 illustrates the experimental results of SMA with 10 other comparators on the 

multimodal function. Among them, SMA obtained the best average and median results on F8-F11 

compared with other algorithms, and AGA obtained the best average and median on F16-21. 

Compared with AGA, SMA has a greater advantage in unimodal functions, while AGA has a 

preferable performance in multimodal functions. 

 

Table 8 

Results on multimodal functions with traditional algorithms during 1000 iterations 

 F8    F9    F10   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA -12569.4  0.1  -1.26E+04  0.00000  0.00000  9.96E-01  8.882E-16 0.00000  8.88E-16 

SCA -3886.1  225.6  -3.82E+03  18.35521  21.43693  7.22E+01  11.32308  9.66101  1.42E+01 

SSA -7816.8  842.3  -6.98E+03  56.61307  12.89967  1.38E+02  2.25688  0.72068  5.03E+00 

GWO -6088.7  859.4  -3.83E+03  0.06990  0.38287  1.12E-01  0.00000  0.00000  1.62E-14 

MFO -8711.6  827.4  -8.71E+03  162.06619  49.63022  1.63E+02  15.79421  6.91218  1.60E+01 

WOA -11630.6  1277.5  -1.15E+04  0.00000  0.00000  0.00000  3.967E-15 2.030E-15 4.09E-15 

GOA -7430.4  761.2  -5.33E+03  86.74360  31.98704  2.35E+02  4.63913  1.06742  9.76E+00 

DA -5631.8  590.7  -5.62E+03  155.13449  38.31121  1.56E+02  8.64831  1.22491  8.72E+00 

ALO -5610.1  438.7  -5.61E+03  80.88997  20.29005  8.49E+01  2.00733  0.77081  2.90E+00 

MVO -7744.9  693.4  -5.59E+03  112.71842  24.57189  2.33E+02  1.14572  0.70341  7.70E+00 

PBIL -4046.4  331.0  -3.87E+03  150.36667  19.01267  1.55E+02  18.44223  0.19901  1.85E+01 

PSO -6728.1  650.2  -6.72E+03  369.24464  18.68261  3.73E+02  8.41508  0.41051  8.75E+00 

DE -12409.8  149.2  -9.93E+03  59.28367  6.07679  8.60E+01  4.638E-07 1.383E-07 5.66E-03 

 F11    F12    F13   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.00000  0.00000  0.00000  0.001195  0.001422  1.42E-02  0.001577  0.003000  1.45E-01 

SCA 0.23534  0.22480  1.29E+00  2.290194  2.958865  3.48E+07  518.6869  2782.8453  1.78E+07 

SSA 0.01009  0.01067  2.75E+00  5.542545  3.122247  2.17E+01  1.010473  4.701096  9.51E+01 

GWO 0.00028  0.00156  3.30E-04  0.037303  0.019955  5.70E-02  0.488377  0.174343  6.85E-01 

MFO 22.63478  42.31343  2.82E+01  0.470607  0.782326  3.78E+02  6792.354  37201.162  8.22E+03 

WOA 0.00000  0.00000  0.00000  0.005205  0.003512  5.21E-03  0.181197  0.166955  1.81E-01 

GOA 0.83124  0.15983  1.29E+01  6.489011  2.717562  4.07E+03  26.3886  16.5919  1.36E+05 

DA 9.87794  4.37600  1.00E+01  306.688  1096.994  3.10E+02  4.571E+04 1.022E+05 4.73E+04 

ALO 0.00994  0.01271  1.07E+00  9.456697  3.198074  1.28E+01  2.193406  7.919110  3.25E+00 

MVO 0.57543  0.08747  8.98E+00  1.294524  1.103471  1.27E+01  0.081286  0.043182  1.78E+03 

PBIL 416.755  48.474  4.25E+02  2.667E+08 7.771E+07 2.99E+08  5.860E+08 9.982E+07 6.40E+08 

PSO 1.03228  0.00489  1.04E+00  4.80322  0.86670  5.16E+00  23.191583  4.195613  2.88E+01 

DE 9.761E-11 2.126E-10 7.56E-03  3.633E-13 3.399E-13 5.03E-05  1.691E-12 1.165E-12 2.44E-04 

 F16    F17    F18   



Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 521.0056  0.109097  5.21E+02  618.2822  3.265441  6.23E+02  1300.6543  0.117872  1.30E+03 

SCA 521.0427  0.053484  5.21E+02  636.9826  2.244227  6.40E+02  1303.9293  0.374149  1.30E+03 

SSA 520.0584  0.107997  5.21E+02  622.8313  4.728569  6.28E+02  1300.5756  0.148959  1.30E+03 

GWO 521.0410  0.054652  5.21E+02  616.6474  2.512406  6.24E+02  1300.6905  0.549189  1.30E+03 

MFO 520.2870  0.170908  5.20E+02  622.7437  2.701796  6.23E+02  1301.3678  1.019364  1.30E+03 

WOA 520.7787  0.119860  5.21E+02  637.7305  2.887311  6.38E+02  1300.5741  0.260727  1.30E+03 

GOA 520.1390  0.082631  5.21E+02  622.1088  4.176909  6.30E+02  1300.5707  0.149671  1.30E+03 

DA 520.9891  0.094995  5.21E+02  637.2321  2.789804  6.37E+02  1301.4935  1.087595  1.30E+03 

ALO 520.0494  0.093898  5.21E+02  626.0851  3.620101  6.27E+02  1300.4614  0.100828  1.30E+03 

MVO 520.5350  0.102963  5.21E+02  614.4619  3.437751  6.25E+02  1300.6110  0.114900  1.30E+03 

PBIL 521.0393  0.043185  5.21E+02  640.6707  1.407127  6.41E+02  1305.2666  0.311548  1.31E+03 

PSO 521.0618  0.054837  5.21E+02  624.8413  3.071015  6.26E+02  1300.5438  0.095901  1.30E+03 

DE 520.7948  0.090515  5.21E+02  629.2747  1.350482  6.32E+02  1300.5363  0.050040  1.30E+03 

 F19    F20    F21   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 1400.6670  0.361757  1.40E+03  1510.9564  3.012250  1.52E+03  1611.4845  0.567778  1.61E+03 

SCA 1473.0029  15.520309  1.51E+03  16869  13476.33  1.26E+05  1613.2141  0.241155  1.61E+03 

SSA 1400.4157  0.238649  1.40E+03  1513.1155  4.171347  1.53E+03  1612.2034  0.537832  1.61E+03 

GWO 1407.2551  8.107508  1.42E+03  1949.1287  920.5966  2.05E+03  1611.7755  0.656408  1.61E+03 

MFO 1430.1235  20.716796  1.43E+03  208671  416720.09  2.17E+05  1612.6679  0.536141  1.61E+03 

WOA 1405.0142  6.261895  1.41E+03  1727.0908  122.1192  1.73E+03  1612.8485  0.463174  1.61E+03 

GOA 1400.4834  0.331069  1.40E+03  1519.1245  6.359294  2.07E+03  1612.5397  0.510917  1.61E+03 

DA 1422.6359  10.796483  1.42E+03  9188.8893  11460.10  9.19E+03  1613.1921  0.298363  1.61E+03 

ALO 1400.2530  0.047583  1.40E+03  1513.5362  4.828335  1.52E+03  1612.6442  0.572926  1.61E+03 

MVO 1400.5551  0.403115  1.40E+03  1512.5460  3.700993  1.54E+03  1612.2971  0.526756  1.61E+03 

PBIL 1525.2857  13.420862  1.54E+03  1435558  748053.04  1.65E+06  1613.3661  0.212279  1.61E+03 

PSO 1400.3217  0.095276  1.40E+03  1519.8378  1.631079  1.52E+03  1612.5422  0.412383  1.61E+03 

DE 1400.4031  0.089745  1.40E+03  1517.1531  1.278695  1.52E+03  1612.5367  0.196986  1.61E+03 

 

Table 9 

Comparison results on the multimodal functions with advanced algorithms 

 F8    F9    F10   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA -12569.4  0.068790  -1.25E+04  0.00000  0.00000  0.00000  8.88E-16 0.00000  8.88E-16 

BLPSO -4544.5  400.3510  -3.87E+03  207.3039  17.0015  2.30E+02  10.22852  0.69752  1.30E+01 

CLPSO -8295.7  351.9193  -6.10E+03  139.7601  15.8072  2.17E+02  8.16910  0.64983  1.43E+01 

CBA -7355.4  720.5161  -7.32E+03  133.1773  40.7382  1.44E+02  14.91852  3.56105  1.50E+01 

RCBA -7248.6  814.7588  -7.24E+03  77.4955  14.5193  1.07E+02  6.76084  6.62622  9.76E+00 

CDLOBA -7236.3  600.1951  -7.23E+03  243.8551  62.2823  2.72E+02  19.57830  0.77234  1.97E+01 

m_SCA -5925.7  986.2730  -3.94E+03  0.00000  0.00000  1.11E+01  5.35800  9.03538  1.34E+01 

IWOA -11252.0  1780.6529  -1.12E+04  0.00000  0.00000  0.00000  3.73E-15 2.17E-15 3.73E-15 

LWOA -10775.8  1141.9779  -1.02E+04  5.12692  18.79066  2.12E+01  4.81E-05 2.84E-05 1.03E-01 

CSSA -12569.5  0.000239  -1.26E+04  7.14583  39.06861  7.15E+00  0.03173  0.03027  3.21E-02 

 F11    F12    F13   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 0.00000  0.00000  0.00000  0.00095  0.00101  2.68E-02  0.00135  0.00211  1.16E-01 

BLPSO 21.49704  3.65806  4.49E+01  4441.072  7073.234  3.24E+05  378616.22  235965.32  3.39E+06 

CLPSO 6.33968  0.91129  4.95E+01  20.05685  8.11078  5.40E+05  11963.83  13926.90  4.89E+06 

CBA 0.22145  0.11045  7.77E-01  15.33572  7.52799  1.59E+01  43.5008  21.1814  4.59E+01 

RCBA 0.02800  0.00947  6.72E-02  13.56632  4.54840  1.47E+01  0.09299  0.03609  2.19E-01 



CDLOBA 145.5030  96.9037  1.74E+02  20.17146  6.03281  2.08E+01  35.8588  11.9314  3.85E+01 

m_SCA 0.00000  0.00000  5.52E-02  0.19369  0.16449  9.82E-01  1.58065  0.19641  2.40E+00 

IWOA 0.00264  0.01100  3.70E-03  0.00930  0.02578  1.18E-02  0.16079  0.13761  2.07E-01 

LWOA 0.02455  0.04926  4.54E-01  0.00063  0.00024  1.78E-02  0.01660  0.01442  2.05E-01 

CSSA 0.02723  0.03762  2.74E-02  5.98E-05 5.33E-05 6.03E-05  0.00090  0.00086  9.06E-04 

 F16    F17    F18   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 521.0127  0.069163  5.21E+02  619.4282  2.915833  6.24E+02  1300.6589  0.145401  1.30E+03 

BLPSO 521.0920  0.070988  5.21E+02  629.3125  1.805214  6.34E+02  1300.9286  0.138697  1.30E+03 

CLPSO 521.0176  0.059879  5.21E+02  629.7237  1.356299  6.35E+02  1300.6655  0.089057  1.30E+03 

CBA 520.3188  0.287026  5.20E+02  641.6516  3.410418  6.42E+02  1300.5091  0.134277  1.30E+03 

RCBA 520.3774  0.123562  5.21E+02  640.2023  3.196174  6.41E+02  1300.4976  0.123416  1.30E+03 

CDLOBA 521.0056  0.064721  5.21E+02  636.2815  2.936580  6.37E+02  1300.5098  0.146951  1.30E+03 

m_SCA 520.9230  0.085023  5.21E+02  625.2555  2.906023  6.37E+02  1301.7144  0.980372  1.30E+03 

IWOA 520.7061  0.096424  5.21E+02  634.7725  3.121824  6.36E+02  1300.5275  0.096831  1.30E+03 

LWOA 520.7827  0.071113  5.21E+02  633.6692  3.853306  6.40E+02  1300.6093  0.123410  1.30E+03 

CSSA 521.0604  0.088972  5.21E+02  644.9713  1.825103  6.45E+02  1309.5241  0.830936  1.31E+03 

 F19    F20    F21   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 1400.6565  0.361610  1.40E+03  1510.5477  2.46585  1.52E+03  1611.5995  0.70239  1.61E+03 

BLPSO 1410.4409  2.902210  1.43E+03  1802.5795  180.2212  4.48E+03  1613.0067  0.23416  1.61E+03 

CLPSO 1403.5324  2.812311  1.45E+03  1952.4155  304.9825  4.26E+04  1613.0049  0.22798  1.61E+03 

CBA 1400.3048  0.092093  1.40E+03  1562.3666  18.85652  1.56E+03  1613.5381  0.36317  1.61E+03 

RCBA 1400.2943  0.060668  1.40E+03  1538.9490  7.61211  1.54E+03  1613.6523  0.32500  1.61E+03 

CDLOBA 1400.3181  0.058475  1.40E+03  1753.9951  117.6904  1.76E+03  1613.5741  0.25668  1.61E+03 

m_SCA 1426.1725  10.27231  1.46E+03  4997.7533  4929.0634  1.55E+04  1612.5383  0.51908  1.61E+03 

IWOA 1400.2787  0.143274  1.40E+03  1625.8982  78.1816  1.67E+03  1612.9124  0.55626  1.61E+03 

LWOA 1400.3289  0.095342  1.47E+03  1572.8452  27.80344  1.26E+04  1612.8272  0.52137  1.61E+03 

CSSA 1680.8338  17.75465  1.68E+03  232677.12  39953.5  2.33E+05  1613.1690  0.24750  1.61E+03 

 

 

Table 10 

Comparison results on multimodal functions during 3E5 evaluations 

 F8    F9    F10   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA -1.26E+04 2.48E-04 -1.257E+04  0.00000 0.00000 0.000E+00  8.88E-16 0.00000 8.882E-16 

SCA -4.41E+03 2.15E+02 -4.288E+03  0.00000 0.00000 3.499E+00  1.26E+01 9.43E+00 1.610E+01 

SSA -7.79E+03 7.06E+02 -7.419E+03  6.54E+01 1.50E+01 9.676E+01  1.81E+00 8.07E-01 3.901E+00 

GWO -6.38E+03 7.23E+02 -4.403E+03  0.00000 0.00000 0.000E+00  7.64E-15 1.08E-15 7.638E-15 

MFO -8.37E+03 7.59E+02 -8.366E+03  1.65E+02 3.28E+01 1.651E+02  1.58E+01 7.02E+00 1.576E+01 

WOA -1.21E+04 9.04E+02 -1.207E+04  0.00000 0.00000 0.000E+00  3.38E-15 2.12E-15 3.375E-15 

GOA -7.56E+03 6.06E+02 -6.158E+03  1.04E+02 4.22E+01 1.742E+02  2.71E+00 8.89E-01 7.415E+00 

MVO -8.18E+03 7.17E+02 -6.424E+03  8.27E+01 2.44E+01 1.772E+02  1.08E-01 3.58E-01 6.771E+00 

PSO -7.07E+03 8.27E+02 -7.067E+03  3.43E+02 1.69E+01 3.469E+02  7.78E+00 2.41E-01 8.041E+00 

DE -1.24E+04 1.31E+02 -1.243E+04  3.32E-02 1.82E-01 3.317E-02  7.64E-15 1.08E-15 7.994E-15 

AGA -8.38E+02 9.72E-03 -8.379E+02  9.94E-03 0.00000 1.655E-02  1.64E-02 0.00000 1.644E-02 

 F11    F12    F13   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 



SMA 0.00000 0.00000 0.000E+00  7.55E-06 8.36E-06 2.780E-04  6.77E-06 3.68E-06 2.418E-03 

SCA 8.03E-11 4.36E-10 6.453E-02  3.27E-01 5.08E-02 6.351E+03  1.98E+00 1.11E-01 2.375E+00 

SSA 1.18E-02 1.10E-02 1.577E+00  1.41E+00 1.70E+00 6.100E+00  5.06E-03 6.75E-03 3.688E+00 

GWO 2.49E-04 1.36E-03 2.514E-04  2.56E-02 1.20E-02 3.778E-02  4.01E-01 1.95E-01 5.442E-01 

MFO 3.31E+01 5.55E+01 3.312E+01  2.29E-01 4.75E-01 2.288E-01  6.15E-01 1.11E+00 6.152E-01 

WOA 6.58E-04 2.52E-03 6.577E-04  1.09E-06 4.07E-07 1.087E-06  3.84E-04 2.00E-03 3.836E-04 

GOA 1.81E-02 1.51E-02 7.615E+00  1.93E+00 1.50E+00 1.380E+01  9.33E-01 3.86E+00 5.700E+03 

MVO 2.76E-02 1.33E-02 6.603E+00  1.64E-01 5.09E-01 7.007E+00  4.06E-03 5.30E-03 3.389E+01 

PSO 1.02E+00 1.27E-02 1.022E+00  3.38E+00 3.70E-01 3.822E+00  1.57E+01 1.83E+00 1.729E+01 

DE 0.00000 0.00000 0.000E+00  1.57E-32 5.57E-48 1.571E-32  1.35E-32 5.57E-48 1.350E-32 

AGA 2.14E-02 1.37E-02 3.063E-02  2.17E-02 2.82E-02 5.744E-02  1.13E-02 9.89E-03 1.987E-02 

 F16    F17    F18   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 5.21E+02 2.27E-01 5.210E+02  6.15E+02 3.06E+00 6.188E+02  1.30E+03 1.26E-01 1.301E+03 

SCA 5.21E+02 5.60E-02 5.210E+02  6.33E+02 2.39E+00 6.364E+02  1.30E+03 3.71E-01 1.304E+03 

SSA 5.20E+02 1.07E-01 5.210E+02  6.19E+02 4.24E+00 6.234E+02  1.30E+03 1.45E-01 1.301E+03 

GWO 5.21E+02 5.11E-02 5.210E+02  6.14E+02 3.27E+00 6.210E+02  1.30E+03 3.11E-01 1.301E+03 

MFO 5.20E+02 1.73E-01 5.203E+02  6.23E+02 3.53E+00 6.231E+02  1.30E+03 1.26E+00 1.302E+03 

WOA 5.20E+02 1.61E-01 5.204E+02  6.36E+02 4.15E+00 6.363E+02  1.30E+03 1.05E-01 1.301E+03 

GOA 5.20E+02 7.96E-02 5.210E+02  6.17E+02 3.63E+00 6.250E+02  1.30E+03 6.95E-02 1.301E+03 

MVO 5.20E+02 4.14E-02 5.210E+02  6.10E+02 3.97E+00 6.214E+02  1.30E+03 1.24E-01 1.301E+03 

PSO 5.21E+02 4.59E-02 5.210E+02  6.23E+02 3.42E+00 6.231E+02  1.30E+03 7.31E-02 1.300E+03 

DE 5.21E+02 4.46E-02 5.206E+02  6.20E+02 2.07E+00 6.226E+02  1.30E+03 4.04E-02 1.300E+03 

AGA 5.00E+02 4.82E-01 5.005E+02  6.00E+02 1.68E-02 6.000E+02  1.30E+03 2.53E-02 1.300E+03 

 F19    F20    F21   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 1.40E+03 3.13E-01 1.401E+03  1.51E+03 1.83E+00 1.517E+03  1.61E+03 7.14E-01 1.612E+03 

SCA 1.44E+03 7.88E+00 1.466E+03  4.96E+03 4.20E+03 2.681E+04  1.61E+03 2.17E-01 1.613E+03 

SSA 1.40E+03 2.22E-01 1.400E+03  1.51E+03 2.10E+00 1.523E+03  1.61E+03 6.27E-01 1.612E+03 

GWO 1.40E+03 7.60E+00 1.410E+03  1.89E+03 7.48E+02 1.960E+03  1.61E+03 6.66E-01 1.612E+03 

MFO 1.43E+03 2.55E+01 1.435E+03  3.14E+05 5.20E+05 3.141E+05  1.61E+03 5.10E-01 1.613E+03 

WOA 1.40E+03 1.23E-01 1.400E+03  1.57E+03 2.49E+01 1.575E+03  1.61E+03 5.51E-01 1.613E+03 

GOA 1.40E+03 3.31E-01 1.401E+03  1.51E+03 2.20E+00 1.531E+03  1.61E+03 7.46E-01 1.612E+03 

MVO 1.40E+03 3.32E-01 1.401E+03  1.51E+03 2.26E+00 1.527E+03  1.61E+03 5.89E-01 1.612E+03 

PSO 1.40E+03 9.78E-02 1.400E+03  1.52E+03 1.38E+00 1.517E+03  1.61E+03 4.48E-01 1.612E+03 

DE 1.40E+03 1.24E-01 1.400E+03  1.51E+03 1.10E+00 1.513E+03  1.61E+03 2.18E-01 1.612E+03 

AGA 1.40E+03 1.21E-02 1.400E+03  1.50E+03 7.70E-03 1.500E+03  1.60E+03 9.19E-03 1.600E+03 

 

3.2.3 Analysis of avoiding locally optimal solutions 

All functions in Tables 11-12, as fix-dimension multimodal functions, have multiple local optima, 

which are challenging for MAs, thus can discriminate the overall efficacy of algorithms in 

exploration and exploration. According to the data in Tables 11-12, SMA ranked first in AVG on F28, 

F29, F30, F32, and F33, which show a very potential comprehensive ability. It can also be seen from 

the optimum curve of F28-33 in Figures 9 that SMA achieves superior solutions faster than other 

counterparts, thus well coordinating the ability of exploration and exploration. The statistics of 

Tables 13-14 illustrate that SMA can also maintain certain advantages in composition functions 

compared with the advanced algorithm, which further reflects that SMA can avert falling into local 

optimum with fast convergence. F25, F32, and F33 in Figure 10 also intuitively incarnate the 



performance preponderance of SMA in composition functions. 

 

Table 11 

Comparison results on the Hybrid functions of CEC 2014 with traditional algorithms 

 F22    F23    F24   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 1981009  955714  3.35E+06  23768.042  9648.796  2.41E+05  1916.4612  20.81879  1.92E+03 

SCA 1.475E+07 7203070  2.36E+07  2.767E+08 1.768E+08 7.00E+08  2025.9911  29.94193  2.08E+03 

SSA 1105845  643830  3.04E+06  10164.216  8416.726  5.28E+06  1920.6469  18.54917  1.93E+03 

GWO 3134418  3888996  4.44E+06  1.721E+07 2.683E+07 4.25E+07  1959.2308  39.30239  1.97E+03 

MFO 3685312  5224753  4.56E+06  3.014E+07 1.146E+08 3.10E+07  1971.9869  47.63181  1.97E+03 

WOA 1.704E+07 1.559E+07 1.73E+07  435824  298836  4.45E+05  1996.2181  42.52503  2.00E+03 

GOA 1438154  1067917  4.32E+06  6928.741  5474.188  5.04E+07  1916.6548  2.61108  1.94E+03 

DA 1.179E+07 8700286  1.18E+07  1.213E+07 1.867E+07 1.23E+07  1998.5264  63.45143  2.00E+03 

ALO 1218376  902036  1.58E+06  3771.512  1977.571  1.54E+05  1922.1569  20.15628  1.92E+03 

MVO 648113  423330  2.31E+06  11057.398  8877.483  3.04E+07  1913.1472  2.24974  1.93E+03 

PBIL 1.987E+07 5897960  2.61E+07  1.090E+09 4.562E+08 1.33E+09  2153.5319  42.97329  2.18E+03 

PSO 721353  340828  1.11E+06  3733762  1011652  4.15E+06  1917.9437  2.40252  1.92E+03 

DE 5502647  2468774  8.31E+06  199823  164718  6.71E+05  1911.6762  2.02980  1.92E+03 

 F25    F26    F27   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 26151.83  14592.587  3.50E+04  691037.74  447817.80  1.12E+06  2785.9438  200.10440  2.82E+03 

SCA 42036.30  23681.495  1.14E+05  3774544  2456159  6.71E+06  3295.8542  153.63191  3.52E+03 

SSA 28121.80  15931.602  3.37E+04  378039  364201  8.50E+05  2733.8257  195.24839  2.83E+03 

GWO 26371.89  17760.819  3.15E+04  1401869  3144566  1.93E+06  2681.9022  164.02295  2.83E+03 

MFO 68807.98  34415.152  7.04E+04  909632.7  874394.6  1.07E+06  2988.3818  304.13153  2.99E+03 

WOA 141181.82  150095.222  1.42E+05  9190469  11782812  9.53E+06  3196.0473  259.04790  3.20E+03 

GOA 15217.92  11721.455  2.85E+04  386067  274805  1.22E+06  2721.2340  196.75397  2.99E+03 

DA 170066.67  177342.58  1.70E+05  4046744  4943178  4.05E+06  3238.7712  336.86424  3.24E+03 

ALO 44576.07  18719.138  4.76E+04  416024  304543  5.44E+05  3023.7395  188.96878  3.03E+03 

MVO 7113.7952  3345.696  2.22E+04  233142  208201  6.68E+05  2636.7226  181.32671  2.82E+03 

PBIL 100886.52  83601.365  1.64E+05  6032360  2197809  8.28E+06  3545.4177  245.28854  3.70E+03 

PSO 19948.16  7799.1853  3.10E+04  324137  191521  4.32E+05  2934.5667  216.35151  2.97E+03 

DE 12477.50  4695.8815  1.57E+04  880050  356197  1.61E+06  2594.1841  115.53194  2.77E+03 

 

Table 12 

Comparison results on composite functions of CEC2014 with traditional algorithms 

 F28    F29    F30   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 2500.0000  0.00000  2.50E+03  2600.0000  0.00000  2.60E+03  2700.0000  0.00000  2.70E+03 

SCA 2712.2094  24.49225  2.80E+03  2612.5376  16.11479  2.66E+03  2734.7826  10.58302  2.76E+03 

SSA 2632.2624  11.99882  2.66E+03  2644.8211  7.39515  2.65E+03  2717.7099  4.57908  2.72E+03 

GWO 2644.1677  15.52070  2.65E+03  2600.0269  0.00904  2.60E+03  2709.8706  6.60434  2.71E+03 

MFO 2672.0010  55.23865  2.67E+03  2678.9946  29.86466  2.68E+03  2718.0092  9.84490  2.72E+03 

WOA 2680.3948  54.85251  2.68E+03  2611.4760  7.24474  2.61E+03  2717.4700  20.81026  2.72E+03 

GOA 2636.9870  8.96575  2.69E+03  2645.5150  5.40226  2.67E+03  2717.0876  4.91578  2.73E+03 

DA 2721.4771  44.95443  2.72E+03  2661.0711  14.44841  2.66E+03  2743.0074  14.56249  2.74E+03 

ALO 2629.0815  8.44167  2.63E+03  2651.7113  7.91597  2.65E+03  2726.5079  7.20090  2.73E+03 

MVO 2624.2212  6.19267  2.65E+03  2635.7205  6.61514  2.66E+03  2708.2693  1.65495  2.72E+03 



PBIL 3031.2435  81.13515  3.08E+03  2827.7418  25.17373  2.83E+03  2760.6456  11.08699  2.77E+03 

PSO 2619.6398  1.46590  2.62E+03  2631.7808  6.40174  2.63E+03  2718.6208  5.72742  2.72E+03 

DE 2615.2456  0.00132  2.62E+03  2628.8256  2.71282  2.63E+03  2722.3177  3.27296  2.73E+03 

 F31    F32    F33   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 2700.7493  0.11128  2.70E+03  2900.0000  0.00000  2.90E+03  3000.0000  0.00000  3.00E+03 

SCA 2703.5386  0.42894  2.70E+03  3824.0615  291.2901  3.95E+03  5546.0181  481.5436  5.59E+03 

SSA 2700.5370  0.14086  2.70E+03  3530.3707  215.6535  3.62E+03  4170.5366  395.2774  4.47E+03 

GWO 2766.6830  68.52197  2.77E+03  3401.0954  122.9196  3.59E+03  4250.4859  411.0486  4.75E+03 

MFO 2702.0134  1.45934  2.70E+03  3622.4093  196.0596  3.62E+03  3955.0668  198.3093  3.96E+03 

WOA 2717.0896  37.72566  2.72E+03  3902.6457  357.3971  3.90E+03  5395.1711  768.3897  5.41E+03 

GOA 2772.4391  72.70589  2.78E+03  3534.0606  204.6178  3.68E+03  4454.6468  563.7650  4.87E+03 

DA 2744.5288  66.71856  2.74E+03  3906.7882  348.4316  3.91E+03  6418.4644  759.2642  6.42E+03 

ALO 2720.5156  40.82834  2.72E+03  3570.0454  291.1912  3.59E+03  5699.9910  503.7231  5.77E+03 

MVO 2743.7298  71.22152  2.75E+03  3390.4461  148.2171  3.60E+03  4137.0810  330.4390  4.68E+03 

PBIL 2704.7340  0.37452  2.71E+03  3931.9655  192.1610  3.97E+03  4535.2650  415.0320  4.62E+03 

PSO 2790.8757  30.60922  2.79E+03  3487.2364  302.7920  3.51E+03  7526.0776  944.8788  7.80E+03 

DE 2700.5562  0.06268  2.70E+03  3439.1447  117.3664  3.56E+03  3727.8590  34.29086  3.78E+03 

 

Table 13 

Comparison results on the Hybrid functions of CEC 2014 with advanced algorithms 

 F22    F23    F24   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 1804495  975279  2.92E+06  19731.57  12366.188  2.85E+05  1924.4016  29.9388  1.93E+03 

BLPSO 5.95E+06 2.79E+06 1.01E+07  2.03E+07 7.71E+06 9.85E+07  1940.2723  7.4647  1.98E+03 

CLPSO 9.36E+06 4.32E+06 2.15E+07  2.35E+07 1.66E+07 2.67E+08  1973.9754  18.5819  2.07E+03 

CBA 875955  682022  1.41E+06  19590.62  55097.347  4.37E+04  1930.5601  26.3854  1.93E+03 

RCBA 536209  287301  9.14E+05  27035.80  48215.716  4.05E+04  1929.3577  27.4688  1.93E+03 

CDLOBA 253257  159357  5.29E+05  14436.39  8148.226  2.05E+04  1983.8732  37.8347  1.99E+03 

m_SCA 3405875  2.39E+06 1.58E+07  5.42E+07 6.44E+07 3.95E+08  1974.7719  29.9192  2.03E+03 

IWOA 1.11E+07 6.76E+06 1.42E+07  232413.82  5.40E+05 5.39E+05  1974.5125  48.0377  1.98E+03 

LWOA 1.13E+07 7452363  2.92E+07  588224.18  2.66E+06 7.46E+07  1954.6903  42.1280  2.12E+03 

CSSA 2.34E+08 7.53E+07 2.34E+08  7.83E+09 2.67E+09 7.83E+09  2599.1453  124.8102  2.60E+03 

 F25    F26    F27   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 20184.423  11536.23  2.74E+04  566429.1  440779.47  8.85E+05  2853.3837  275.30887  2.88E+03 

BLPSO 40020.222  17226.38  6.37E+04  1443418  637791.49  3.44E+06  3039.7382  166.89957  3.27E+03 

CLPSO 35837.420  13506.64  8.72E+04  1678372  755401.12  5.09E+06  2852.1935  155.80947  3.31E+03 

CBA 47394.400  21444.35  6.74E+04  425055.3  394927.78  6.04E+05  3470.7820  389.88490  3.47E+03 

RCBA 31728.076  17810.98  5.27E+04  353013.1  266894.62 5.93E+05  3385.7049  345.09736  3.40E+03 

CDLOBA 49593.385  25881.81  6.28E+04  158313.0  1.68E+05 2.95E+05  3280.2697  252.07423  3.28E+03 

m_SCA 25033.409  11116.37  6.57E+04  903524.0  975927  3.32E+06  2710.7381  185.83183  3.26E+03 

IWOA 54586.150  24987.96  6.40E+04  3798947  3041196  5.53E+06  3025.7726  243.33062  3.05E+03 

LWOA 45846.654  23789.30  2.51E+05  2379875  1411692  1.57E+07  3021.9632  251.61117  3.37E+03 

CSSA 4.00E+06 4.34E+06 4.00E+06  1.47E+08 1.33E+08 1.47E+08  55417.05  53372.36  5.54E+04 

 

Table 14 

Comparison results on composite functions of CEC2014 with advanced algorithms 



 F28    F29    F30   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 2500.0000  0.00000  2.50E+03  2600.0000  0.00000  2.60E+03  2700.0000  0.00000  2.70E+03 

BLPSO 2642.6104  5.72836  2.68E+03  2667.7295  2.33812  2.68E+03  2729.1590  3.76596  2.74E+03 

CLPSO 2641.0387  6.17469  2.73E+03  2660.4964  3.06098  2.69E+03  2723.7881  4.81229  2.74E+03 

CBA 2618.5576  2.10126  2.62E+03  2672.7287  32.2058  2.67E+03  2738.8447  16.6010  2.74E+03 

RCBA 2616.5451  1.59102  2.62E+03  2671.7927  31.5474  2.67E+03  2734.0323  12.9174  2.73E+03 

CDLOBA 2619.8273  5.91180  2.63E+03  2701.7423  41.3677  2.70E+03  2724.5749  12.1083  2.73E+03 

m_SCA 2657.6041  18.7651  2.70E+03  2600.0082  0.00530  2.60E+03  2717.9183  3.76490  2.74E+03 

IWOA 2653.0880  16.8268  2.66E+03  2607.2619  5.28645  2.61E+03  2714.2469  16.8627  2.72E+03 

LWOA 2635.7620  26.8390  2.81E+03  2610.4768  6.01548  2.61E+03  2712.9723  16.0958  2.72E+03 

CSSA 2525.7607  121.6063  2.53E+03  2600.4211  0.21279  2.60E+03  2700.0573  0.03311  2.70E+03 

 F31    F32    F33   

Algorithm AVG STD MED  AVG STD MED  AVG STD MED 

SMA 2700.7690  0.14584  2.70E+03  2900.0000  0.000000  2.90E+03  3000.0000  0.000000  3.03E+03 

BLPSO 2719.8189  40.7556  2.73E+03  3639.7610  104.8236  3.78E+03  4689.9702  351.2075  5.46E+03 

CLPSO 2703.1872  0.86410  2.71E+03  3255.3722  59.2992  3.45E+03  5394.7830  503.6760  6.86E+03 

CBA 2714.7665  60.7392  2.72E+03  3992.4341  466.0520  4.00E+03  5749.7099  1087.8530  5.77E+03 

RCBA 2731.0975  67.5372  2.75E+03  4088.5512  406.7701  4.11E+03  5820.2491  1076.0463  5.86E+03 

CDLOBA 2715.7761  56.3032  2.72E+03  3902.9353  371.3979  3.91E+03  5346.9885  837.0278  5.36E+03 

m_SCA 2701.3185  0.81232  2.70E+03  3324.8813  254.9219  3.52E+03  4280.9832  270.1009  4.87E+03 

IWOA 2732.9019  77.0976  2.73E+03  3800.5003  342.5802  3.83E+03  5181.1074  676.4584  5.28E+03 

LWOA 2700.5873  0.13596  2.70E+03  3865.9583  237.8645  4.00E+03  4457.1988  270.3753  4.91E+03 

CSSA 2792.4644  23.3249  2.79E+03  4836.8934  344.1577  4.84E+03  8555.0615  3476.6646  8.56E+03 



 

Figure 9 Comparisons between SMA and traditional MAs 



 

Figure 10 Comparisons between SMA and advanced MAs 

3.2.4 Significance of superiority analysis 

Wilcoxon sign-rank test method [66] was exerted to verify whether SMA has obvious advantages 

over pairwise comparison. If the p-value produced by the comparison is below the significant level 

of 0.05 in this case, it means that the achievements of the algorithm in pairwise comparison have 

obvious superiority in the statistical sense. Otherwise, it is considered that the discrepancies between 

the two contestants are inconspicuous in a statistical sense. In order to draw further comprehensive 

conclusions and control the family-wise error rate (FWER), the true statistical significance (#TSS) of 

the combined pairwise comparison is shown in Eq 3.1 [67]： 



𝑝 = 1 −∏ 1− 𝑝𝐻1𝑘  𝑖   (3.1) 

The p value achieved from this expression is shown in Table 15, where the TSS in F1-8, F10, F12, 

F15, F28-30, and F32-33 were all less than 0.05 when compared with traditional algorithms. 

Therefore, SMA has significant differences on these functions compared to the traditional algorithms. 

TSS in Table 15 when compared with advanced algorithms indicates that SMA outperforms other 

algorithms in F1-8, F10, F17, F19-22, F25, F28-30, F32-33. 

Although pairwise comparisons can be used for comparisons between algorithms, the FWER 

generated during the experiment cannot be corrected in advance, and the choice of algorithms in 

multiple comparisons can greatly affect the results of the analysis. In order to reduce the effect of 

algorithm selection in each result set, multiple comparison processes are used to modify FWER. In 

multiple comparisons, first check whether the results obtained by the algorithm are unequal. When 

inequality exists, then perform post-hoc analysis to know which algorithms have significant 

differences. Therefore, non-parametric Friedman’s test [68] was utilized. Table 16 illustrates the 

average ranking of the results of the algorithms on the benchmarks compared in the three sets of 

experiments. In a non-hypothesis, there is equality between all algorithms, so if the hypothesis is 

reversed, it means that there are differences between the algorithms being compared. Then we chose 

Holm ’s test [69] as the method of post hoc analysis, which is a multiple comparison method that can 

be used for control algorithms. Using the z-value obtained in Table 17 to find the corresponding 

p-value from the normal distribution table and compare it with the corrected α value. Take SMA as a 

control algorithm and compared it with other algorithms. The p-values have been sorted according to 

their significance. If the p-value is lower than the corresponding significant level α, the 

corresponding hypothesis is reversed, that is, the algorithm is significantly different. This paper 

selected two significant level 𝛼 = 0.10 and 𝛼 = 0.05, which indicate that there are marginal and 

significant differences between the two methods. As can be seen from Table 17, compared with the 

traditional algorithms other than DE, the z-value is smaller than the corrected value with α = 0.05 as 
the significant level, that is, there are significant differences in benchmarks. Compared with 

advanced algorithms other than LWOA, there are significant differences among the benchmark 

functions, and slightly different from LWOA. In the experiments with other algorithms in the 

evaluation version, SMA is slightly different compared to GWO and WOA, not significantly 

different from AGA and DE, while significantly different from the remaining algorithms. 

 

Table 15 

True p-value obtained from comparison on thirty-three benchmarks 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

T
rad

itio
n

al M
A

s 

#TSS 2.08E-05 2.08E-05 2.08E-05 2.08E-05 2.08E-05 4.13E-03 2.68E-05 1.34E-04 1.00E+00 2.31E-05 1.00E+00 

 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 

#TSS 3.71E-05 5.23E-02 5.53E-02 6.34E-03 7.95E-01 1.32E-01 3.26E-01 2.24E-01 1.98E-01 6.88E-02 7.01E-01 

 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 

#TSS 4.53E-01 7.59E-01 9.96E-01 5.34E-01 4.96E-01 2.29E-05 2.08E-05 2.63E-04 4.36E-01 2.08E-05 2.16E-05 

A
d
v
a

n
ced

 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

#TSS 1.56E-05 1.56E-05 1.56E-05 1.56E-05 1.85E-02 1.40E-03 2.60E-03 1.60E-05 1.00E+00 2.74E-05 1.00E+00 



 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 

#TSS 1.83E-01 4.91E-01 1.25E-01 1.91E-01 9.93E-01 1.86E-05 7.57E-01 5.59E-04 1.56E-05 3.22E-05 2.04E-03 

 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 

#TSS 3.37E-01 5.58E-02 3.91E-02 3.62E-01 8.15E-01 1.56E-05 1.56E-05 7.49E-05 7.75E-01 1.56E-05 1.64E-05 

 

Table 166 

Results of Friedman test of iterative version and function evaluation version   

 Iterative version on F1-33 

 SMA SCA SSA GWO MFO WOA GOA DA ALO MVO PBIL PSO DE 

Avg 3.057  9.396  5.180  5.280  8.037  6.735  6.690  10.580  6.124  5.013  12.228  7.865  4.815  

Rank 1 11 4 5 10 8 7 12 6 3 13 9 2 

 Iterative version on F1-33 

 SMA BLPS CLPS CBA RCBA CDLO m_SC IWOA LWOA CSSA    

Avg 2.297  7.578  6.996  5.507  5.408  6.100  5.000  4.710  4.907  6.497     

Rank 1 10 9 6 5 7 4 2 3 8    

 Evaluation version on F1-21 

 SMA SCA SSA GWO MFO WOA GOA MVO PSO DE AGA   

Avg 3.189  8.103  5.668  5.369  8.201  5.135  6.805  5.895  8.970  4.292  4.373    

Rank 1 9 6 5 10 4 8 7 11 2 3   

 

Table 177 

Holms’ test (take SMA as the control algorithm) 

 𝑆𝑀𝐴 𝑉𝑆.  𝑧 − 𝑣𝑎𝑙𝑢𝑒  𝑝 − 𝑣𝑎𝑙𝑢𝑒  𝛼/𝑖 , 𝛼 = 0.05  𝛼/𝑖, 𝛼 = 0.10  

T
rad

itio
n
al alg

o
rith

m
s 

PBIL 9.9878  8.6010E-24 0.0042  0.0083  

DA 8.2494  7.9860E-17 0.0045  0.0091  

SCA 6.9851  1.4240E-12 0.005 0.01 

MFO 6.7639  6.7120E-12 0.0056  0.0111  

PSO 4.9307  4.0900E-07 0.0063  0.0125  

WOA 4.2669  9.9060E-06 0.0071  0.0143  

GOA 3.8877  5.0540E-05 0.0083  0.0167  

ALO 3.7296  9.5740E-05 0.01 0.02 

GWO 2.9394  1.6460E-03 0.0125 0.025 

SSA 2.3389  9.6680E-03 0.0167  0.0333  

MVO 1.7384  0.04111  0.025 0.05 

DE 1.6436  0.05009  0.05 0.1 

A
d

v
an

ced
 alg

o
rith

m
s 

BLPSO 12.0748  7.1760E-34 0.00556  0.01111  

CLPSO 10.7331  3.5580E-27 0.00625 0.0125 

CSSA 9.3915  2.9580E-21 0.00714  0.01429  

CDLOBA 8.0498  4.1460E-16 0.00833  0.01667  

CBA 6.7082  9.8520E-12 0.01 0.02 

RCBA 5.3666  4.0120E-08 0.0125 0.025 

IWOA 4.0249  2.8500E-05 0.01667  0.03333  

m_SCA 2.6833  0.00365  0.025 0.05 



LWOA 1.3416  0.08986  0.05 0.1 

E
v

alu
atio

n
 

PSO 5.648039 8.1160E-09 0.005 0.01 

MFO 4.896673 4.8730E-07 0.0056  0.0111  

SCA 4.801299 7.8820E-07 0.00625 0.0125 

GOA 3.532738 2.0570E-04 0.0071  0.0143  

MVO 2.644126 0.0041  0.0083  0.0167  

SSA 2.422361 0.0077  0.01 0.02 

GWO 2.130033 0.0166  0.0125 0.025 

WOA 1.901289 0.0286  0.0167  0.0333  

AGA 1.156902 0.1237  0.025 0.05 

DE 1.077811 0.1406  0.05 0.1 

 

3.3 Wall-clock time analysis 

In this section of the experimentations, SMA was compared with other 11 participants in the 

calculation of time-consuming experiments in the 33 benchmarks mentioned above. The 

time-consuming calculation approach is that all participants independently run 10 times on each 

function and recorded the results in Table 18. As can be observed from the data in the table, the 

computation of SMA took relatively longer time, because the calculation of the oscillation factor 

requires more computing power. However, SMA can still outperform some algorithms while taking 

less time, such as GOA, DA, and ALO. In general, even if it is relatively time-consuming, SMA still 

possess tremendous effectiveness advantages over other algorithms, so the time-consuming is worth 

it. 

 

Table 18 

Wall-Clock Time costs of SMA and other candidates on 33 benchmarks 

 SMA SCA SSA GWO MFO WOA GOA DA ALO MVO PSO DE 

F1 14.040  1.310  0.811  1.825  1.513  0.562  119.46 90.262  218.35 3.822  0.967  5.054  

F2 13.291  1.139  0.796  1.622  1.342  0.577  118.10 110.88 216.74 3.806  0.920  4.446  

F3 13.478  2.480  2.215  2.839  2.636  2.278  110.01 116.26 207.60 4.165  1.919  5.288  

F4 12.776  1.123  0.796  1.560  1.123  0.546  117.18 86.659  207.51 2.761  0.640  3.838  

F5 12.995  1.404  1.030  1.950  1.466  0.780  123.64 115.76 233.11 3.401  0.874  4.976  

F6 15.241  1.513  1.045  2.090  1.544  0.686  146.37 122.92 260.16 3.760  0.889  4.914  

F7 16.037  2.356  1.919  2.855  2.465  1.638  141.66 118.85 257.99 4.883  1.794  5.678  

F8 15.709  1.763  1.295  2.434  1.778  0.983  141.11 172.03 255.46 2.824  1.264  5.491  

F9 16.115  1.576  1.123  2.028  1.669  0.764  142.13 136.65 259.30 3.994  1.139  4.742  

F10 14.726  1.794  1.279  2.090  1.997  0.936  143.20 111.15 251.09 4.025  1.092  5.444  

F11 16.115  2.215  1.607  2.309  1.981  0.998  144.87 121.33 264.06 4.040  1.217  5.600  

F12 19.032  4.602  4.134  5.023  4.836  3.900  149.91 124.59 265.56 6.880  4.134  8.596  

F13 18.939  4.852  4.274  5.101  4.243  3.604  149.15 126.20 266.68 6.833  4.087  8.518  

F14 16.411  2.090  1.732  2.855  2.340  1.326  140.80 145.54 256.34 4.399  1.544  5.647  

F15 15.725  2.106  1.498  2.465  1.950  1.108  144.89 136.08 261.58 4.524  1.373  5.990  

F16 15.803  2.106  1.638  2.652  2.044  1.295  146.76 152.35 261.16 4.243  1.342  5.351  

F17 31.715  16.677  15.943  17.254  16.224  15.678  163.83 185.08 281.14 19.438  16.021  20.686  

F18 16.177  2.090  1.544  2.621  2.246  1.279  146.37 170.30 263.08 4.508  1.342  5.288  



F19 16.006  2.075  1.560  2.434  1.872  1.092  142.55 130.79 263.76 4.446  1.435  5.850  

F20 2.387  1.700  2.465  2.153  1.295  147.06 143.31 264.25 4.493  1.529  5.366   

F21 16.177  2.246  1.716  2.683  2.278  1.295  145.67 171.82 262.23 4.680  1.451  5.444  

F22 15.897  2.231  1.654  2.808  2.340  1.513  145.09 172.78 258.66 4.446  1.654  5.881  

F23 15.413  1.919  1.576  2.480  2.200  1.357  140.18 144.19 253.08 4.555  1.404  5.928  

F24 19.531  5.054  4.633  5.491  4.976  4.072  150.63 128.26 268.99 7.940  4.586  9.064  

F25 16.552  2.262  1.638  2.730  2.184  1.310  145.11 120.90 265.67 4.384  1.513  5.710  

F26 13.057  2.168  1.529  2.168  1.763  1.154  118.01 119.45 206.59 3.697  1.498  4.836  

F27 14.414  2.122  1.763  2.371  2.059  1.373  115.64 115.86 210.28 3.962  1.466  5.179  

F28 16.833  4.477  3.572  4.914  4.618  3.385  125.33 128.81 216.87 5.632  3.182  7.784  

F29 15.663  3.526  2.933  3.635  2.980  2.278  117.65 89.155  216.04 5.429  2.668  6.942  

F30 17.831  4.274  3.448  4.711  4.228  3.292  141.46 165.82 248.77 6.646  3.869  7.847  

F31 33.665  20.296  20.327  19.890  19.563  19.781  162.25 187.37 277.26 22.464  19.095  24.633  

F32 33.915  20.530  19.656  20.155  19.438  19.251  164.48 187.70 280.47 22.729  19.594  23.681  

F33 18.705  5.850  5.554  6.334  5.834  4.586  150.04 124.41 269.46 8.237  4.898  9.547  

 

3.4 Parameter sensitivity analysis 

In this section, parameter sensitivity test was utilized to evaluate the impacts of population size, 

iterations and parameter 𝑧 on the algorithm. The range of parameter 𝑧 is [0,0.1], and there are 11 

values at intervals of 0.01. The population size was set to 5,10,30,50,100 and 200. The number of 

iterations was set to 50,100,200,500,1000 and 2000. Under other conditions remained, different 

values of parameter 𝑧 were tested on F1-13 and the results are shown in Table 19. SMA0 indicates 

that 𝑧 takes a value of 0, SMA1 indicates that 𝑧 takes a value of 0.01, and so on. The values in the 

table are ranking. From the results in Table 20, it can be recognized that the result of the algorithm is 

superior when 𝑧  was taken as 0.03, because the probability maintains the balance between 

explosion and exploitation. Experimenter can also take different values for 𝑧 according to specific 

problems. 

 

Table 19 

Ranking of results with varied values of parameter 𝑧 

Function SMA0 SMA1 SMA2 SMA3 SMA4 SMA5 SMA6 SMA7 SMA8 SMA9 SMA10 

1 1 1 1 1 1 6 7 8 9 10 11 

2 1 1 3 4 5 6 7 9 8 10 11 

3 1 1 1 1 5 6 7 8 9 10 11 

4 1 1 3 4 5 6 7 8 9 10 11 

5 11 10 9 8 7 3 4 2 6 5 1 

6 11 1 2 3 4 5 6 9 7 8 10 

7 1 2 4 3 6 7 10 8 9 5 11 

8 11 1 4 5 6 8 9 2 7 10 3 

9 1 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 1 

12 11 10 9 7 6 8 5 4 2 3 1 



13 11 10 2 1 8 4 5 3 9 7 6 

Average 4.85E+00 3.15E+00 3.15E+00 3.08E+00 4.31E+00 4.77E+00 5.38E+00 4.92E+00 6.00E+00 6.23E+00 6.08E+00 

Rank 5 2 2 1 3 4 7 6 8 10 9 

To explore the influence of populations and iterations on the algorithm, we chose F13 to test the 

synergistic effect of the two parameters on the algorithm. As can be seen visually from Figure 11, as 

the population size and iterations increased, the average became better. The reason is that the 

increase in the number of populations improves the search efficiency, and the increase in iterations 

leads to an incensement in the times of searches and the accuracy of subsequent searches. However, 

the results were not increased proportionally when the population size and iterations continue to 

grow due to the global approximate optimal solution has been roughly discovered. Researchers can 

select the appropriate populations and iterations based on specific questions. 

 

 

Figure 11 The influence of populations and iterations 

3.5 Experiments on engineering design problems 

Most problems have constraints in the real production environment. The process of considering 

constraints of equality and inequality during optimization is called constraints processing. The 

candidate solutions of the heuristic algorithm can be divided into feasible and infeasible according to 

the constraints. There are currently several types of constraint methods: death penalty, annealing, 

static, dynamic, co-evolutionary, and adaptive. Although useful information may be lost in the 

process of abandonment, we still adopted a relatively simple method of the death penalty with low 

computational cost to deal with search individuals who violated constraints and then re-assigned 

them a relatively large target value. 

In the following sections, SMA is tested four engineering-constrained design problems: a welded 

beam problem, a pressure vessel problem, a cantilever, and I-beam.  



3.5.1 Welded beam structure problem 

The main purpose of the problem is to constrain side constraints, end deflection of the beam(𝛿), 
buckling load on the bar( 𝑐), bending stress in the beam( ), moreover, shear stress( ) with the least 

economic cost of welded beams. 

There are four variables, for instance, the thickness of the weld(𝑕), length of the attached bar(𝑙), 
the height of the bar(𝑡), the thickness of the bar(𝑏). The design diagram for this problem is shown in 

Figure 12. The formulations were list below: 

Consider: 𝑋 = ,𝑥 , 𝑥 , 𝑥 , 𝑥 - = ,𝑕 𝑙 𝑡 𝑏- 
Minimize: 𝐹(𝑋) = 1.10471𝑥  𝑥 + 0.04811𝑥 𝑥 (14.0 + 𝑥 ) 
Subject to: 𝑔 (𝑋) =  (𝑋) −  𝑚𝑎 ≤ 0 𝑔 (𝑋) = 𝜎(𝑋) − 𝜎𝑚𝑎 ≤ 0 𝑔 (𝑋) = 𝛿(𝑋) − 𝛿𝑚𝑎 ≤ 0 𝑔 (𝑋) = 𝑥 − 𝑥 ≤ 0 𝑔 (𝑋) =  −  𝐶(𝑋) ≤ 0 𝑔 (𝑋) = 0.125 − 𝑥 ≤ 0 𝑔 (𝑋) = 1.10471𝑥  + 0.04811𝑥 𝑥 (14.0 + 𝑥 ) − 5.0 ≤ 0 

where τ(𝑥 ) = √( ′) + 2 ′ ′′ 𝑥 2𝑅 + ( ′′)   ′ =  √2𝑥 𝑥 ,  ′′ = 𝑀𝑅𝐽 ,M = P(L + 𝑥 2 ) 
 = √𝑥  4 + (𝑥 + 𝑥 2 )  

𝐽 = 2 ,√2𝑥 𝑥 *𝑥  4 + (𝑥 + 𝑥 2 ) +- 
σ(𝑥 ) = 6 𝐿𝑥 𝑥  , δ(𝑥 ) = 6 𝐿 𝐸𝑥  𝑥  

 𝐶(𝑥 ) = 4.013𝐸√𝑥  𝑥  36𝐿 (1 − 𝑥 2𝐿√ 𝐸4𝐺) P = 60001 , L = 14 n. . 𝛿𝑚𝑎 = 0.25 𝑖𝑛.  = 30 × 1 𝑝𝑠𝑖,  = 12 × 10 𝑝𝑠𝑖  𝑚𝑎 = 13600𝑝𝑠𝑖, 𝜎𝑚𝑎 = 30000𝑝𝑠𝑖 
In this problem, SMA was compared with MFO[23], SSA[52], Random[70], Siddall[71], 

Ragsdell[70], Coello and Montes[72], GWO[21], WOA[50], GSA, Simplex[70] and David[70]. 

Table 20 illustrates that SMA can obtain the optimal value. 
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Figure 12 Structure of welded beam design 

 

Table 20 

Results of welded beam structure problem compared with other competitors  

Algorithms 
Optimum values for variables Optimum 

cost h l t b 

SMA 0.2054 3.2589 9.0384 0.2058 1.69604 

MFO[23] 0.2057 3.4703 9.0364 0.2057 1.72452 

SSA[52] 0.2057 3.4714 9.0366 0.2057 1.72491 

Random[70] 0.4575 4.7313 5.0853 0.6600 4.11856 

Siddall[71] 0.2444 6.2189 8.2915 0.2444 2.38154 

Ragsdell[70] 0.2455 6.1960 8.2730 0.2455 2.38594 

Coello and 

Montes[72] 
0.2060 3.4713 9.0202 0.2065 1.72822 

GWO[21] 0.2057 3.4784 9.0368 0.2058 1.72624 

WOA[50] 0.2054 3.4843 9.0374 0.2063 1.73050 

GSA 0.1821 3.8570 10.0000 0.2024 1.87995 

Simplex[70] 0.2792 5.6256 7.7512 0.2796 2.53073 

David[70] 0.2434 6.2552 8.2915 0.2444 2.38411 

 

3.5.2 Pressure vessel structure problem 

The intention of the problem is to find the parameters of cylindrical pressure vessels which can 

minimize the total cost of production and meet the pressure requirements. The parameters including 

the thickness of the shell(𝑇𝑠), inner radius(𝑇ℎ), the thickness of the head(𝑇ℎ) and the length of the 

cylindrical portion. Both ends of the container are covered with a hemispherical shell at one end. 

Figure 13 illustrates the design of the object and its corresponding parameters. 

The formulations of four constraints are listed as follow: 

Consider: 𝑋 = ,𝑥  𝑥  𝑥   𝑥 - = ,𝑇𝑠 𝑇ℎ 𝑅 𝐿- 
Objective: 𝑓(𝑋)𝑚𝑖𝑛 = 0.6224𝑥 𝑥 𝑥 + 1.7781𝑥 𝑥  + 3.1661𝑥 𝑥  + 19.84𝑥 𝑥   
Subject to: 𝑔 (𝑋) = −𝑥 + 0.0193𝑥 ≤ 0 



𝑔 (𝑋) = −𝑥 + 0.00954𝑥 ≤ 0 𝑔 (𝑋) = − 𝑥 𝑥  − 43 𝑥  + 1296000 ≤ 0 𝑔 (𝑋) = 𝑥 − 240 ≤ 0 

Variable ranges: 0 ≤ 𝑥 ≤ 99, 0 ≤ 𝑥 ≤ 99, 10 ≤ 𝑥 ≤ 200, 10 ≤ 𝑥 ≤ 200 

 

From the data of Table 21, it is obvious that SMA can obtain fairly superior optimal values 

compared with MFO[23], BA[73], HPSO[74], CSS[5], CPSO[75], ACO[76], GWO[21], WOA[50], 

MDDE[77], Lagrangian multiplier[78] and Branch-bound[79]. 
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Figure 13 Structure of pressure vessel 

Table 21 

Results of pressure vessel design problem compared with other competitors  

Algorithms 
Optimum values for variables 

Optimum cost 𝑇𝑠 𝑇ℎ R L 

SMA 0.7931 0.3932 40.6711 196.2178 5994.1857 

MFO[23] 0.8125 0.4375 42.0984 176.6366 6059.7143 

BA[73] 0.8125 0.4375 42.0984 176.6366 6059.7143 

HPSO[74] 0.8125 0.4375 42.0984 176.6366 6059.7143 

CSS[5] 0.8125 0.4375 42.1036 176.5727 6059.0888 

CPSO[75] 0.8125 0.4375 42.0912 176.7465 6061.0777 

ACO[76] 0.8125 0.4375 42.1036 176.5727 6059.0888 

GWO[21] 0.8125 0.4345 42.0892 176.7587 6051.5639 

WOA[50] 0.8125 0.4375 42.0983 176.6390 6059.7410 

MDDE[77] 0.8125 0.4375 42.0984 176.6360 6059.7017 

Lagrangian 

multiplier[78] 
1.1250 0.6250 58.2910 43.6900 7198.0428 

Branch-bound

[79] 
1.1250 0.6250 47.7000 117.7010 8129.1036 

 

3.5.3 Cantilever structure problem 

The cantilever beam is made up of five hollow square cross-sections, as exhibited in Figure 14. 

Since the thickness is fixed, only six parameters identified in the figure need to be considered. The 

intention of the problem is to dwindle the total mass of the cantilever beam when the bearing 



capacity is satisfied. The formulas of this optimization problem are listed as follow: 

Consider: 𝑋 = ,𝑥  𝑥  𝑥  𝑥  𝑥 - 
Minimize: 𝐹(𝑋) = 0.6224(𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 ) 
Subject to:  (X) = 61x  + 37𝑥  + 19𝑥  + 7𝑥  + 1𝑥  ≤ 1 

Variable ranges: 0.01 ≤ x . 𝑥 , 𝑥 , 𝑥 , 𝑥 ≤ 100 

constant

X

X
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Figure 14 Structure of cantilever beam 

Compared to MFO[23], SOS[80], CS[81], MMA[82] and GCA[82], SMA can achieve better 

results in the cantilever design problem, as shown in Table 22. 

Table 22 

Results of cantilever beam structural problem in comparison with other competitors  

Algorithm 
Optimum values for variables Optimum 

cost 𝑋  𝑋  𝑋  𝑋  𝑋  
SMA 6.017757 5.310892 4.493758 3.501106 2.150159 1.339957 

MFO[23] 5.9830 5.3167 4.4973 3.5136 2.1616 1.33998 

SOS[80] 6.0188 5.3034 4.4959 3.4990 2.1556 1.33996 

CS[81] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 

MMA[82] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

GCA[82] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

 

3.5.4 I-beam structure problem 

The intention of this engineering problem is to minimize the vertical deviation of I-beam by 

adjusting four parameters as shown in Figure 15. 
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Figure 15 Structure of I-beam 



Table 23 lists the optimization results for SMA compared to ARSM[83], SOS[80], CS[81] and 

IARSM[83]. The data reveals that SMA can obtain excellent optimal values in this engineering 

problem, reflecting the applicability of SMA to engineering problems. 

Table 23 

Results of I-beam structural problem in comparison with other methods  

Algorithm 
Optimum values for variables Optimum 

cost b h 𝑇  𝑇  

SMA 49.998845 79.994327 1.764747 4.999742 0.006627 

ARSM[83] 37.0500 80.0000 1.7100 2.3100 0.0157 

SOS[80] 50.0000 80.0000 0.9000 2.3218 0.0131 

CS[81] 50.0000 80.0000 0.9000 2.3217 0.0131 

IARSM[83] 48.4200 79.9900 0.9000 2.4000 0.1310 

4 Conclusions and future perspectives     

This paper proposed a brand-new metaheuristic enlightened by slime behavior to tackle the 

optimization problem. The algorithm mainly uses the weights to simulate the positive and negative 

feedback of the bio-oscillator during the foraging to the food source to form a different thickness of the 

feeding vein network. The morphology of the slime mould also changes with three different contraction 

patterns. 

To qualitatively analyze the algorithm, four metrics (search history, the trajectory of the first dimension, 

average fitness, and convergence curve) were applied. Then, the algorithm was evaluated in 33 

benchmark functions consisting of unimodal, multimodal, fix-dimension multimodal, and composite 

functions. Most of the functions tested are composite functions. Wilcoxon sign-rank test and Freidman 

test were applied to estimate the efficacy of the algorithm more scientifically. The experimental results 

illustrate that SMA can guarantee the performance of explorations while achieving superior exploitations, 

thus maintaining an outstanding balance between exploitations and explorations, which reflects the 

superior performance of the algorithm in a statistical sense compared with other algorithms. 

Meanwhile, SMA was used in four classical engineering structural problems, including welded beam, 

pressure vessel, cantilever, and I-beam design problems. The results demonstrate that SMA is also 

applicable to engineering optimization problems in real life with satisfactory optimization results. 

The accounts for the satisfactory performance of SMA in maintaining the balance of exploitation and 

exploration can be theoretically attributed to the following points: 

 The adaptive weight W enables the SMA to maintain a certain disturbance rate while guaranteeing 

fast convergence, thus avoiding optimal local trapping during fast convergence. 

 Vibration parameter 𝑣𝑏⃗⃗⃗⃗  allows the individual position of slime mould to contract in a specific 

way, thus ensuring the efficiency of the early exploration and the accuracy of the later 

exploitation. 

 The adequate utilization of individual fitness values allows SMA to make better decisions based 

on historical information. 

 The location updating decision parameter p and three different location updating methods ensure 

better adaptability of the SMA in different search phases. 

On the purpose of improving the extensibility of the algorithm, the development of the algorithm is 

established on the principle of being as simple as possible. In future work, various mutation mechanisms 



or acceleration mechanisms can be employed to enhance the efficacy of the algorithm. The binary version 

of the algorithm can also be developed for feature selection. Moreover, SMA can also be used to optimize 

parameters of classifiers such as kernel extreme learning machine or support vector machine. 

Acknowledgment 

This research is supported by the Science and Technology Plan Project of Wenzhou, China 

(2018ZG012), and the National Natural Science Foundation of China (U1809209). 

 

References

1. Faris, H., et al., An intelligent system for spam detection and identification of the most relevant 

features based on evolutionary Random Weight Networks. Information Fusion, 2019. 48: p. 

67-83. 

2. Osher, S., et al., Laplacian Smoothing Gradient Descent. 2018. 

3. Mirjalili, S., S.M. Mirjalili, and A. Hatamlou, Multi-Verse Optimizer: a nature-inspired 

algorithm for global optimization. Neural Computing and Applications, 2016. 27(2): p. 495-513. 

4. Webster, B. and P. Bernhard, A Local Search Optimization Algorithm Based on Natural 

Principles of Gravitation. 2003. 255-261. 

5. Kaveh, A. and S. Talatahari, Talatahari, S.: A Novel Heuristic Optimization Method: Charged 

System Search. Acta Mechanica 213(3-4), 267-289. Vol. 213. 2010. 267-289. 

6. Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi, GSA: a Gravitational Search Algorithm. Vol. 

179. 2009. 2232-2248. 

7. Mirjalili, S., SCA: A Sine Cosine Algorithm for solving optimization problems. 

Knowledge-Based Systems, 2016. 96: p. 120-133. 

8. Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, Optimization by simulated annealing. Science, 

1983. 220(4598): p. 671-680. 

9. Venkata Rao, R., V. Savsani, and D. P. Vakharia, Teaching–Learning-Based Optimization: An 

optimization method for continuous non-linear large scale problems. Vol. 183. 2012. 1-15. 

10. Formato, R., Central force optimization: A new metaheuristic with applications in applied 

electromagnetics. Vol. 77. 2007. 425-491. 

11. Fogel, D., Artificial Intelligence through Simulated Evolution. 2009. 227-296. 

12. Booker, L.B., D.E. Goldberg, and J.H. Holland, Classifier systems and genetic algorithms. 

Artificial Intelligence, 1989. 40(1): p. 235-282. 

13. Koza, J.R. and J.P. Rice. Automatic programming of robots using genetic programming. in 

Proceedings Tenth National Conference on Artificial Intelligence. 1992. 

14. Hansen, N., S. D Müller, and P. Koumoutsakos, Reducing the Time Complexity of the 

Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Vol. 11. 2003. 

1-18. 

15. Yao, X., Y. Liu, and G. Lin, Evolutionary Programming Made Faster. Vol. 3. 1999. 82-102. 

16. Storn, R. and K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global 

Optimization over Continuous Spaces. Vol. 11. 1997. 341-359. 



17. Beni, G. and J. Wang, Swarm Intelligence in Cellular Robotic Systems. 1993. p. 703-712. 

18. Kennedy, J. and R. Eberhart. Particle swarm optimization. in IEEE International Conference on 

Neural Networks - Conference Proceedings. 1995. 

19. Pinto, P., T. A. Runkler, and J. Sousa, Wasp Swarm Algorithm for Dynamic MAX-SAT Problems. 

2007. 350-357. 

20. Yang, X.-S., A New Metaheuristic Bat-Inspired Algorithm. Vol. 284. 2010. 

21. Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey Wolf Optimizer. Advances in Engineering 

Software, 2014. 69: p. 46-61. 

22. Pan, W.T., A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an 

example. Knowledge-Based Systems, 2012. 26: p. 69-74. 

23. Mirjalili, S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. 

Knowledge-Based Systems, 2015. 89: p. 228-249. 

24. Dorigo, M. and C. Blum, Ant colony optimization theory: A survey. Theoretical Computer 

Science, 2005. 344(2-3): p. 243-278. 

25. Heidari, A.A., et al., Harris hawks optimization: Algorithm and applications. Future Generation 

Computer Systems, 2019. 97: p. 849-872. 

26. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical function 

optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007. 39(3): 

p. 459-471. 

27. Olorunda, O. and A. Engelbrecht, Measuring Exploration/Exploitation in Particle Swarms using 

Swarm Diversity. 2008. 1128-1134. 

28. Lin, L. and M. Gen, Auto-tuning strategy for evolutionary algorithms: Balancing between 

exploration and exploitation. Vol. 13. 2009. 157-168. 

29. Wolpert, D. and W. Macready, No Free Lunch Theorems for Optimization. Vol. 1. 1997. 67-82. 

30. Monismith, D. and B. Mayfield, Slime Mold as a model for numerical optimization. 2008. 1-8. 

31. Li, K., et al., Slime mold inspired routing protocols for wireless sensor networks. Vol. 5. 2011. 

183-223. 

32. Qian, T., et al., An Ant Colony System Based on the Physarum Network. 2013. 297-305. 

33. Schmickl, T. and K. Crailsheim, A Navigation Algorithm for Swarm Robotics Inspired by Slime 

Mold Aggregation. Vol. 4433. 2006. 1-13. 

34. Becker, M., On the Efficiency of Nature-Inspired Algorithms for Generation of Fault-Tolerant 

Graphs. 2015. 1657-1663. 

35. L. Howard, F., The Life History of Physarum polycephalum. Vol. 18. 1931. 

36. Kessler, D., Plasmodial Structure and Motility. 1982. p. 145-208. 

37. Camp, W.G., A method of cultivating myxomycete plasmodia. Vol. 63. 1936. 205-210. 

38. Kamiya, N., THE CONTROL OF PROTOPLASMIC STREAMING. Vol. 92. 1940. 462-3. 

39. Nakagaki, T., H. Yamada, and T. Ueda, Interaction between cell shape and contraction pattern in 

the Physarum plasmodium. Vol. 84. 2000. 195-204. 

40. Becker, M. On the Efficiency of Nature-Inspired Algorithms for Generation of Fault-Tolerant 

Graphs. in Proceedings - 2015 IEEE International Conference on Systems, Man, and 

Cybernetics, SMC 2015. 2016. 

41. Šešum-Čavić, V., E. Kühn, and D. Kanev, Bio-inspired search algorithms for unstructured P2P 

overlay networks. Swarm and Evolutionary Computation, 2016. 29: p. 73-93. 

42. Daniel Yu, K., et al. Bicycle pathway generation through a weighted digital slime mold 

algorithm via topographical analysis. in CAADRIA 2018 - 23rd International Conference on 



Computer-Aided Architectural Design Research in Asia: Learning, Prototyping and Adapting. 

2018. 

43. Beekman, M. and T. Latty, Brainless but Multi-Headed: Decision Making by the Acellular Slime 

Mould Physarum polycephalum. Journal of Molecular Biology, 2015. 427(23): p. 3734-3743. 

44. Latty, T. and M. Beekman, Food quality and the risk of light exposure affect patch-choice 

decisions in the slime mold Physarum polycephalum. Vol. 91. 2010. 22-7. 

45. Latty, T. and M. Beekman, Speed-accuracy trade-offs during foraging decisions in the acellular 

slime mould Physarum polycephalum. Vol. 278. 2011. 539-45. 

46. Latty, T. and M. Beekman, Slime moulds use heuristics based on within-patch experience to 

decide when to leave. Vol. 218. 2015. 

47. Kareiva, P. and G. Odell, Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use 

Area-Restricted Search. Vol. 130. 1987. 

48. Latty, T. and M. Beekman, Food quality affects search strategy in the acellular slime mould, 

Physarum polycephalum. Vol. 20. 2009. 1160-1167. 

49. van den Bergh, F. and A. Engelbrecht, A Study of Particle Swarm Optimization Particle 

Trajectories. Vol. 176. 2006. 937-971. 

50. Mirjalili, S. and A. Lewis, The Whale Optimization Algorithm. Advances in Engineering 

Software, 2016. 95: p. 51-67. 

51. Yang, X.S., Firefly algorithms for multimodal optimization, in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). 2009. p. 169-178. 

52. Mirjalili, S., et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design 

problems. Advances in Engineering Software, 2017. 114: p. 163-191. 

53. Mirjalili, S., The Ant Lion Optimizer. Vol. 83. 2015. 

54. Simon, D., Biogeography-Based Optimization. Vol. 12. 2009. 702-713. 

55. Storn, R. and K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global 

Optimization over Continuous Spaces. Journal of Global Optimization, 1997. 11(4): p. 341-359. 

56. Ju, X. and F. Liu, Wind farm layout optimization using self-informed genetic algorithm with 

information guided exploitation. Applied Energy, 2019. 248: p. 429-445. 

57. Chen, X., et al., Biogeography-based learning particle swarm optimization. Vol. 21. 2017. 7519–
7541. 

58. Cao, Y., et al., Comprehensive Learning Particle Swarm Optimization Algorithm with Local 

Search for Multimodal Functions. Vol. PP. 2018. 1-1. 

59. Adarsh, B.R., et al., Economic dispatch using chaotic bat algorithm. Vol. 96. 2016. 666-675. 

60. Liang, H., et al., A Hybrid Bat Algorithm for Economic Dispatch With Random Wind Power. Vol. 

PP. 2018. 1-1. 

61. Yong, J., et al., A Novel Bat Algorithm based on Collaborative and Dynamic Learning of 

Opposite Population. 2018. 541-546. 

62. Gupta, S. and K. Deep, A hybrid self-adaptive sine cosine algorithm with opposition based 

learning. Vol. 119. 2018. 

63. Tubishat, M., et al., Improved whale optimization algorithm for feature selection in Arabic 

sentiment analysis. 2018. 

64. Emary, E., H. Zawbaa, and M. Sharawi, Impact of Lèvy flight on modern meta-heuristic 

optimizers. 2018. 

65. Ismail Sayed, G., G. Khoriba, and M. Haggag, A novel chaotic salp swarm algorithm for global 



optimization and feature selection. 2018. 

66. Alcala-Fdez, J., et al., KEEL: A Software Tool to Assess Evolutionary Algorithms for Data 

Mining Problems. Vol. 13. 2009. 307-318. 

67. Eftimov, T. and P. Korošec, A novel statistical approach for comparing meta-heuristic stochastic 

optimization algorithms according to the distribution of solutions in the search space. 

Information Sciences, 2019. 489: p. 255-273. 

68. Sheskin, D.J., Handbook of Parametric and Nonparametric Statistical Procedures. 2007: 

Chapman & Hall/CRC. 

69. Holm, S., A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of 

Statistics, 1979. 6: p. 65-70. 

70. Ragsdell, K. and D. T. Phillips, Optimal Design of a Class of Welded Structures Using 

Geometric Programming. Vol. 98. 1976. 

71. N Sidall, J., Analytical decision-making in engineering design. 1972. 

72. A. Coello Coello, C. and E. Mezura-Montes, Constraint-handling in genetic algorithms through 

the use of dominance-based tournament selection. Vol. 16. 2002. 193-203. 

73. Gandomi, A., et al., Bat algorithm for constrained optimization tasks. Vol. in press. 2013. 

74. He, Q. and L. Wang, Wang, L.: A Hybrid Particle Swarm Optimization with a Feasibility-based 

Rule for Constrained Optimization. Applied Mathematics and Computation 186, 1407-1422. Vol. 

186. 2007. 1407-1422. 

75. He, Q. and L. Wang, An effective co-evolutionary particle swarm optimization for constrained 

engineering design problems. Vol. 20. 2007. 89-99. 

76. Kaveh, A. and S. Talatahari, An improved ant colony optimization for constrained engineering 

design problems. Vol. 27. 2010. 155-182. 

77. Mezura-Montes, E., et al., Multiple trial vectors in differential evolution for engineering design. 

Vol. 39. 2007. 567-589. 

78. K. Kannan, B. and S. N. Kramer, An Augmented Lagrange Multiplier Based Method for Mixed 

Integer Discrete Continuous Optimization and Its Applications to Mechanical Design. Vol. 116. 

1994. 

79. Sandgren, E., Nonlinear integer and discrete programming in mechanical design. Vol. 14. 1988. 

80. Cheng, M.-Y. and D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization 

algorithm. Vol. 139. 2014. 

81. Gandomi, A., X.-S. Yang, and A. Alavi, Cuckoo search algorithm: a metaheuristic approach to 

solve structural optimization problems. Vol. 29. 2013. 1-19. 

82. Chickermane, H. and H.C. Gea, Structural optimization using a new local approximation method. 

Vol. 39. 1996. 829-846. 

83. Wang, G., Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. 

Vol. 125. 2003. 210-220. 

 

View publication statsView publication stats

https://www.researchgate.net/publication/340431861

