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Abstract:  This paper proposes an efficient optimization algorithm based on the physical phenomenon of  

rime-ice, called the RIME or rime optimization algorithm. The RIME algorithm implements the exploration 

and exploitation behaviors in the optimization methods by simulating the soft-rime and hard-rime growth 

process of  rime-ice and constructing a soft-rime search strategy and a hard-rime puncture mechanism. 

Meanwhile, the greedy selection mechanism in the algorithm is improved, and the population is updated in 

the stage of  selecting the optimal solution to enhance the exploitation capability of  the RIME. In the 

experimental, this paper conducts qualitative analysis experiments on the RIME to clarify the characteristics 

of  the algorithm in the process of  finding the optimal solution. The performance of  RIME is then tested 

on a total of  42 functions in the classic IEEE CEC2017 and the latest IEEE CEC2022 test sets. The 

proposed algorithm is compared with 10 well-established algorithms and 10 latest improved algorithms to 

verify its performance advantage. In addition, this paper designs experiments for the parametric analysis of  

RIME to discuss the potential of  the algorithm in running different parameters and handling different 

problems. Finally, this paper applies RIME to five practical engineering problems to verify its effectiveness 

and superiority in real-world problems. The statistical and comparison results show that the RIME is a strong 

and competitive algorithm. The source codes of  the RIME algorithm will be publicly available at 

https://aliasgharheidari.com/RIME.html.  
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Nomenclature 

RIME Rime optimization algorithm 𝑅𝑖𝑗
𝑛𝑒𝑤   

The new position of  the updated 
particle 
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MA Meta-heuristics 𝑅𝑏𝑒𝑠𝑡,𝑗  
The best rime agent in the rime-
population 

ΔABC Rime's growth plane 𝑟1, 𝑟2, 𝑟3  A random number 

D1, D2, D3, D4 The birth points of rime 𝐶𝑂 𝑆 𝜃  The direction of  particle movement 

𝑅  The rime-population 𝑡  The current number of  iterations 

𝑆𝑖  The rime-agents 𝑇  The maximum number of  iterations 

𝑥𝑖𝑗   The rime-particles 𝛽  The environmental factor 

𝑑  The dimension of  the population 𝑤  
The number of  segments of  the 
step function 

𝑖  The ordinal number of  rime-agent ℎ  The degree of  adhesion 

𝑗  The ordinal number of  rime-particle 𝑈𝑏𝑖𝑗 , 𝐿𝑏𝑖𝑗    
The upper and lower bounds of  the 
escape space 

𝐹(𝑆𝑖)  The fitness value of  the agent 𝐸  The coefficient of  being attached 

𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖)  
The normalized value of the current 
agent fitness value 

𝐹𝐸𝑠  The current number of  evaluations 

 

1 Introduction 

With the rapid progress of  artificial intelligence (AI) technology, academic research and engineering 

application fields face increasingly complex optimization problems. Optimization algorithms refer to 

stochastic or deterministic methods that deal with feature space by minimizing or maximizing a single, 

multiple, or many objective functions considering gradient info, constraints, or priority of the system or 

decision maker [1-3]. At present, traditional optimization methods include some classical operations, such as 

linear programming, nonlinear programming, integer programming, etc., and the later developed Newton's 

method [4], conjugate gradient method [5], gradient descent method [6], etc. Although these methods can 

find the global optimal solution to some problems, they may require that the feasible domain be convex, the 

objective function is continuously differentiable, or some more constraints [7]. However, some complex 

optimization problems are usually non-differentiable, non-convex, multi-modal, or cannot be solved with 

old frameworks [8, 9]. Thus, they are challenging to be solved with traditional optimization methods [10]. 

Moreover, when encountering large-scale NP-hard problems [11, 12], traditional methods often find it 

difficult to obtain satisfactory solutions reasonably. Therefore, an accurate, efficient, and stable optimization 

algorithm is urgently needed to solve these difficult problems [13, 14]. 

Evolutionary algorithms (EA) and the particular class of metaheuristic algorithms (MAs) are derivative-

free optimization methods that do not rely on the gradient information of the problem being solved [15, 16]. 

EA and MAs do not guarantee a globally optimal solution but can obtain a near-optimal solutions in a 

reasonable time, making them very suitable for solving complex optimization problems in practice and for 

many applications [17, 18]. Most MAs imitate natural or social phenomena, are inspired by other disciplines, 

and are widely applied to optimization problems in various fields [19, 20]. 

According to the internal operation process of MAs, metaheuristic optimization algorithms can be 

divided into four main categories of algorithms. The first is evolution-based algorithms, which mainly 



simulate the evolutionary law of superiority and inferiority in nature to achieve the overall progress of the 

population and finally complete the solution of the optimal solution. The representative algorithms of 

evolution-based algorithms are the genetic algorithm (GA) [21] and the differential evolution algorithm (DE) 

[22]. With the rise of evolutionary algorithms, more and more algorithms of the same type are proposed, for 

example, evolutionary strategy (ES) [23], evolutionary programming (EP) [24], and gene expression 

programming (GEP) [25], etc. While biological evolutionary algorithms have been intensively studied, several 

researchers have found that biological populations also contain the behavior of seeking advantages, and 

therefore, algorithms based on population intelligence have gradually emerged. These algorithms are 

designed to iteratively update the near-optimal solution by simulating the collaboration or information 

exchange among populations and then lock the global optimal solution. The representative algorithms with 

widespread adoption are particle swarm optimization (PSO) [26], Harris hawks optimization (HHO) [27], 

slime mould algorithm (SMA) [28], hunger games search (HGS) [29], grey wolf optimization (GWO) [30], 

colony predation algorithm (CPA) [31] and whale-optimization algorithm (WOA) [32]. Since the inception 

of swarm intelligence-based algorithms, researchers have proposed several homogeneous algorithms for 

biological populations, such as ant colony optimization (ACO) [33, 34], artificial bee colony (ABC) [35], bat 

algorithm (BA) [36], and cuckoo search (CS) [37], etc.  

With the study of biological populations, human populations have inevitably been chosen as the focus 

of research, and algorithms based on human systems have been proposed one after another. Behaviors 

mainly inspire such algorithms in human systems, such as teaching-learning, social, learning, emotional, and 

managerial behaviors. Among them, teaching-learning-based optimization (TLBO) [38] is the main one. As 

researchers investigate deeper, algorithms based on human systems have emerged, such as harmony search 

(HS) [39], group search optimizer (GSO) [40], interior search algorithm (ISA) [41], mine blast algorithm 

(MBA) [42] and social group optimization (SGO) [43], etc.  

The last category is the algorithms based on natural phenomena, which are not related to biological 

groups but are mainly derived from the reflection of physical and chemical rules in nature. The algorithms 

based on natural phenomena usually take the motion of the object or particle as the criterion to update the 

searched agent, take the stability of the object or environment as the judgment of the optimization state, and 

then regulate the next iteration of the algorithm. Among them, simulated annealing (SA) [44] is the 

representative with high visibility and wide application. Other common algorithms for natural phenomena, 

such as biogeography based optimization (BBO) [45], and gravitational search algorithm (GSA) [46], etc. 

Although the above algorithms perform a significant role in natural-phenomena optimization, there are 

still certain limitations, which can be summarized as follows:  

1) The natural-phenomena algorithms are usually divided into the exploration and exploitation phases. 

The exploration phase is characterized by the strong randomness of the algorithm, high update efficiency, 

and unstable solution quality after each iteration; the strong stability of the algorithm, low update efficiency, 

and stable solution quality after each iteration characterize the exploitation phase. Therefore, balancing these 

two optimization-seeking phases of the algorithm is crucial and directly affects the algorithm's performance.  

2) The parameters significantly influence the optimization performance of most algorithms, and it is 

difficult to determine the exact parameters for optimization problems. When proposed algorithms lack 

qualitative analysis and do not elucidate parameter sensitivity, making it is difficult for them to solve problems 

in depth.  



3) Some algorithms are proposed with wastefully focus on novelty claims with employing new 

metaphors, instead of computational performance advantages over complex problems, or they tested only 

for one type of problems, with limited variety of test sets, resulting in high complexity, low compatibility, 

and poor results when dealing with those new algorithms for other types of problems.  

Although, according to the no free lunch theory [47], algorithms cannot be adapted to all types of 

optimization problems, the actual application scenarios are complex and diverse, and it is necessary to 

balance the specialization and adaptability of algorithms so that they can be widely disseminated and applied. 

To solve the above problems as much as possible, this study proposes a meta-heuristic algorithm based 

on natural phenomena, the rime optimization algorithm (RIME), inspired by the growth behavior of rime-

ice in nature. The RIME consists of three main processes:  

1) Simulating the motion of soft-rime particles in rime-ice and proposing a soft-rime search strategy, 

mainly used to explore the algorithm. This strategy has a unique stepwise exploration and exploitation 

method, and the algorithm can continuously switch between large-range exploration and small-range 

exploitation to achieve high efficiency and high accuracy.  

2) Simulate the crossover behavior between hard-rime agents, and propose a hard-rime puncture 

mechanism, mainly used to exploit the algorithm. This mechanism achieves effective information exchange 

between agents through dimensional cross-swapping between ordinary agents and optimal agents.  

3) Enhance the greedy selection mechanism of the algorithm, and propose the positive greedy selection 

mechanism. This mechanism filters the inferior solutions in the population and actively introduces 

suboptimal solutions by changing the selection of optimal solutions. On the premise of ensuring the quality 

of the population, the diversity of the population is increased, and the algorithm is avoided to fall into local 

optimum as much as possible. 

In the experiments, to elucidate the characteristics and adaptability of the RIME algorithm, qualitative 

analysis experiments and parameter sensitivity experiments are designed in this paper. Further, to verify the 

comprehensive performance of the algorithm, this paper tests the RIME algorithm with 10 highly-cited 

original algorithms and 10 recent high-performance improved algorithms on the test sets of CEC2017 [48] 

and CEC2022 [49], respectively. In addition, this paper designs experiments for the parametric analysis of 

RIME to discuss the algorithm's potential when running with different parameters and dealing with different 

problems. Finally, to verify the ability of the algorithm to solve real-world problems, the RIME algorithm is 

used in this paper for five classical engineering optimization problems, including pressure vessel design (PVD) 

problem, welded beam design (WBD) problem, speed reducer design (SRD) problem, I-beam design (IBD) 

problem, and multiple disk clutch brake design (MDCBD) problem. 

In summary, the contributions of this paper are as follows: 

1) A novel meta-heuristic algorithm based on natural phenomena, called the rime 

optimization algorithm, is inspired by the growth of rime-ice. 



2) A new exploration strategy, exploitation mechanism, and selection mechanism 

are constructed in the RIME algorithm, and each strategy is portable and can be used 

to improve peer algorithms. 

3) Through qualitative analysis experiments and parameter sensitivity experiments, 

the algorithmic characteristics of RIME are detailed for more relevant application to 

various optimization problems. 

4) A comparison experiment between RIME and 20 peer algorithms is designed 

based on the complete data set, and the experimental results confirm that the RIME 

has a tremendous advantage over peer algorithms in terms of optimal performance in 

various types of problems. 

5) The RIME algorithm is applied to five practical engineering optimization 

problems, which initially demonstrates the algorithm's potential for application to 

practical optimization problems and can be subsequently used on other optimization 

problems. 

The rest of this paper is structured as follows. In Section 2, the mechanism of rime-ice formation is 

described and the mechanism inspired is illustrated. In Section 3, rime formation is modeled, and the RIME 

algorithm is proposed. Section 4 describes the experiments involved in this work, including qualitative 

analysis, performance experiments, parametric analysis, and practical applications. Section 5 concludes the 

whole paper and clarifies future research directions. 

2 Inspiration from the formation of rime-ice 

Rime-ice is resulted from accumulated water vapor in the air that has not yet condensed. It freezes and 

sticks to objects such as tree branches at low temperatures. Due to their unique climatic characteristics and 

topography, some regions form a unique landscape like rime-ice every year, as shown in Figure 1. 

  
(a) soft rime (b) hard rime 

Figure 1. Rime-ice real scene1 

 

 
1 Pictures obtained from https://pixabay.com/ as copy right free images  

(a) https://pixabay.com/photos/barbed-wire-frost-frozen-cold-ice-1938842/  

(b) https://pixabay.com/photos/thuja-ice-winter-cold-frozen-6015613/ 

https://pixabay.com/


The growth process of rime ice is determined by the temperature, wind speed, humidity, air, and other 

factors, and rime formation varies under different conditions. At the same time, due to the influence of 

environmental factors and the growth pattern, rime-ice cannot grow indefinitely, and it will stop growing 

when it reaches a relatively stable state. The growth pattern of rime is generally divided into two types: soft-

rime and hard-rime, which is mainly determined by the wind speed during the formation process, as shown 

in Figure 2, where ΔABC represents the growth plane of rime, and D1, D2, D3, D4 represent the birth 

points of rime. Usually, soft rime is generated in a breeze environment, and hard rime is formed in a high-

wind environment. The breeze is characterized by small wind speed and variable wind direction, and the 

wind exists in all directions simultaneously and in the same height plane, as shown in Figure 2(a). Therefore, 

the soft rime formed by the breeze grows slowly and randomly. On the other hand, a gale is characterized 

by high wind speed and roughly the same wind direction in the same height plane, as shown in Fig. 2(b). 

Therefore, the hard rime formed by the gale is fast and grows in approximately the same direction.  

 

(a) soft-rime (b) hard-rime 

Figure 2. The formation process of soft rime and hard rime under different environments 

In summary, this study is inspired by the growth mechanism of rime-ice and proposes a soft-rime 

search strategy for algorithm search by simulating the motion of soft-rime particles. Also, a hard-rime 

puncture mechanism is proposed to exploit the algorithm by simulating the crossover behavior between hard 

rime agents. Finally, the selection mechanism of the metaheuristic algorithm is improved, and the positive 

greedy selection mechanism is proposed. This paper proposes the RIME algorithm with better performance 

by combining the above three mechanisms.  

3 Mathematical model of the RIME 

In this section, the growth process of each rime strip is simulated by analyzing the effects of wind speed, 

freezing coefficient, the cross-sectional area of the attached material, and growth time. On the other hand, 

inspired by the diffusion-limited aggregation [50] method of simulating metal particle aggregation, the motion 

process of each rime particle coalescing into a rime agent is simulated by modeling the motion behavior of 

each rime particle, and the final generated rime-agent is in the form of a strip crystal. The RIME consists of 

four stages: the initialization of rime clusters, the proposed soft-rime search strategy, the proposed hard-rime 



puncture mechanism, and the improvement of the greedy selection mechanism. 

3.1 Rime cluster initialization 

Inspired by reality, this paper treats each agent rime as the searched agent of the algorithm and the 

rime-population formed by all agents as the population of the algorithm. Firstly, the whole rime-population 

𝑅 is initialized. The rime population consists of 𝑛 rime agents 𝑆𝑖 and each rime- agent consists of 𝑑 rime-

particles 𝑥𝑖𝑗 , as shown in Figure 3 and Eq. (1). Thus, the rime-population 𝑅 can be directly represented by 

the rime-particles 𝑥𝑖𝑗 , as shown in Eq. (2).  

𝑅 = [

𝑆1
𝑆2
⋮
𝑆𝑖

] ; 𝑆𝑖 = [𝑥𝑖1  𝑥𝑖2  ⋯ 𝑥𝑖𝑗] (1) 

𝑅 =

[
 
 
 
 
  𝑥11 𝑥12 ⋯ 𝑥1𝑗
  𝑥21 𝑥22 ⋯ 𝑥2𝑗
⋮ ⋮ ⋱ ⋮
  𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑗 ]

 
 
 
 

 (2) 

where 𝑖 is the ordinal number of  the rime agent and 𝑗 is the ordinal number of  the rime particle. In addition, 

𝐹(𝑆𝑖) is used to denote the growth state of  each rime-agent, i.e., the fitness value of  the agent in the meta-

heuristic algorithm.  

 

Figure 3. Initialization of the rime space 

3.2 Soft-rime search strategy 

In a breezy environment, soft-rime growth is strongly random, and the rime particles can freely cover 



most of the surface of the attached object but grow slowly in the same direction. Inspired by the growth of 

soft-rime, this study proposes a soft-rime search strategy using the strong randomness and coverage of rime 

particles, which enables the algorithm to cover the entire search space in the early iteration quickly and does 

not easily fall into the local optimum. 

When the rime particles condense into soft-rime agents, there are the following characteristics: 

 1) Before the particles condense to form a soft rime agent, each particle 𝑥𝑖𝑗 will 

wander according to a certain law, and the efficiency of the wandering is affected by 

environmental factors.  

2) If the free-state rime particles move to the vicinity of a soft-rime agent, they will 

condense with the particles in the agent so that the stability of the soft-rime agent will change.  

3) The distance between the centers of the two particles adhering to each other is 

not fixed, as the degree of condensation varies between each particle.  

4) If the particles move directly outside the escape radius, no interparticle 

condensation occurs.  

5) During the formation of a soft rime, the random condensation of each particle 

increases the area to which the agent is attached, resulting in a greater probability of free 

particle condensation. However, the agent will not grow indefinitely and will eventually reach 

a stable state due to environmental factors. 

In this paper, corresponding to the five motion characteristics of the rime particles, the process of 

condensation of each particle is concisely simulated, as shown in Figure 4, and the position of the rime- 

particles is calculated as shown in Eq. (3).  

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑟1 ⋅ cos 𝜃 ⋅ 𝛽 ⋅ (ℎ ⋅ (𝑈𝑏𝑖𝑗 − 𝐿𝑏𝑖𝑗) + 𝐿𝑏𝑖𝑗) , 𝑟2 < 𝐸 (3) 

where, 𝑅𝑖𝑗
𝑛𝑒𝑤  is the new position of  the updated particle, and 𝑖 and 𝑗 denote the 𝑗-th particle of  the 𝑖-th 

rime-agent. 𝑅𝑏𝑒𝑠𝑡,𝑗 is the 𝑗-th particle of  the best rime-agent in the rime-population 𝑅. The parameter 𝑟1 is 

a random number in the range (-1,1) and 𝑟1  controls the direction of  particle movement together with 

cos 𝜃 will change following the number of  iterations, as shown in Eq. (4). 𝛽 is the environmental factor, 

which follows the number of  iterations to simulate the influence of  the external environment and is used to 

ensure the convergence of  the algorithm, as shown in Eq. (5). ℎ is the degree of adhesion, which is a random 

number in the range (0,1), and is used to control the distance between the centers of two rime-particles. 

 𝜃 = 𝜋 ·
𝑡

10 · 𝑇
 (4) 

where 𝑡 is the current number of  iterations and 𝑇 is the maximum number of  iterations of  the algorithm.  



𝛽 = 1 − [
𝑤 · 𝑡

𝑇
]/𝑤 (5) 

where the mathematical model of  𝛽 is the step function, [·] denotes rounding; the default value of  𝑤 is 5, 

which is used to control the number of  segments of  the step function. Returning to Eq. (3), 𝑈𝑏𝑖𝑗  and 𝐿𝑏𝑖𝑗  

are the upper and lower bounds of  the escape space, respectively, which limit the effective region of  particle 

motion. 𝐸 is the coefficient of  being attached, which affects the condensation probability of  an agent and 

increases with the number of  iterations, as shown in Eq. (6). 

𝐸 = √(𝑡/𝑇) (6) 

𝑟2 is a random number in the range ([51]) which, together with 𝐸, controls whether the particles condense, 

i.e., whether the particle positions are updated. The pseudo-code for the soft-rime search strategy is shown 

in Algorithm 1. 

Algorithm 1 Pseudo-code of  the soft-rime search strategy 

Initialize the rime-population 𝑅 
Get the current optimal agent and optimal fitness 

While 𝑡 ≤ 𝑇 

Coefficient of  adherence 𝐸 = √(𝑡/𝑇) 
        For 𝑖 = 1 ∶ 𝑛 

    For 𝑗 = 1 ∶ 𝑑 

       If  𝑟2 < 𝐸 
         Position update according to the characteristics of the rime particles by Eq. (3) 
       End If 
    End For 
End For 
Update the current optimal agent and optimal fitness 

𝑡 = 𝑡 + 1  
End While  

 



 

Figure 4. Soft-rime particles motion 

3.3 Hard-rime puncture mechanism 

In strong gale conditions, hard-rime growth is simpler and more regular than soft-rime growth. When 

the rime particle condenses into a hard rime, there are the following characteristics: 1) The gale is so strong 

that other influences are negligible, resulting in different hard-rime agents snowballing in the same direction. 

2) Due to the growth direction being the same, each rime agent can easily cross over, a phenomenon called 

rime puncture. 3) Like soft-rime agents, hard-rime agents increase in size as they grow, resulting in a greater 

probability of puncturing between agents in better growing conditions.  

Therefore, this paper is inspired by the puncturing phenomenon and proposes a hard-rime puncture 

mechanism, which can be used to update the algorithm between agents, so that the particles of the algorithm 

can be exchanged and the convergence of the algorithm and the ability to jump out of the local optimum 

can be improved. The puncture phenomenon is shown in Figure 5, and the formula for replacement between 

particles is shown in Eq. (7). 

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗  ,𝑟3 < 𝐹

𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) (7) 

where 𝑅𝑖𝑗
𝑛𝑒𝑤  is the new position of the updated particle and 𝑅𝑏𝑒𝑠𝑡,𝑗 is the 𝑗-th particle of the best rime-agent 

in the rime-population 𝑅 . 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) denotes the normalized value of the current agent fitness value, 

indicating the chance of the 𝑖-th rime-agent being selected. 𝑟3 is a random number in the range )-1,1(. 

The pseudo-code for the hard-rime puncture mechanism is shown in Algorithm 2. 

Algorithm 2 Pseudo-code of  the hard-rime puncture mechanism 

Initialize the rime-population 𝑅 
Get the current optimal agent and optimal fitness 

While 𝑡 ≤ 𝑇 



    For 𝑖 = 1 ∶ 𝑛 

    For 𝑗 = 1 ∶ 𝑑 

       If  𝑟3 < 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑆𝑖  
         Position update according to the characteristics of the rime-particles by Eq. (7) 
       End If 
    End For 
End For 
Update the current optimal agent and optimal fitness 

𝑡 = 𝑡 + 1  
End While  

 

Figure 5. Hard-rime puncturing 

3.4 Positive greedy selection mechanism 

Typically, metaheuristic optimization algorithms have a greedy selection mechanism that replaces and 

records the best fitness value and the best agent after each update. The typical idea is to compare the updated 

fitness value of an agent with the global optimum, and if the updated value is better than the current global 

optimum, then the optimum fitness value is replaced, and the agent is recorded as the optimum. The 

advantage of such an operation is that it is simple and fast, but it does not help in the exploration and 

exploitation of the population and only serves as a record. 

Therefore, the paper proposes an aggressive greedy selection mechanism for participating in population 

updates to improve global exploration efficiency. The specific idea is to compare the updated fitness value 

of an agent with the fitness value of an agent before the update, and if the updated fitness value is better 

than the value before the update, a replacement occurs, and also, the solution of both agents is replaced. On 

the one hand, this mechanism allows the population to continuously have good agents through active agent 

replacement, which improves the quality of the global solution. On the other hand, as the position of the 

agents of the population changes significantly with each iteration, there will inevitably be agents that are 

worse than the population before the update and are detrimental to the next iteration. Therefore, this 

operation can be used to ensure that the population evolves in a more optimal direction at each iteration. 



In this paper, the pseudo-code of the positive greedy selection mechanism for solving the minimum 

value problem, as an example, is shown in Algorithm 3.  

Algorithm 3 Pseudo-code of  the positive greedy selection mechanism 

Initialize the rime population 𝑅 
Get the current optimal agent and optimal fitness 

While 𝑡 ≤ 𝑇 

       For 𝑖 = 1 ∶ 𝑛 

    If 𝐹(𝑅𝑖
𝑛𝑒𝑤) < 𝐹(𝑅𝑖)     // Compare fitness values 

         𝐹(𝑅𝑖) = 𝐹(𝑅𝑖
𝑛𝑒𝑤)  // Replace fitness values 

         𝑅𝑖 = 𝑅𝑖
𝑛𝑒𝑤         // Replace the current agent 

         If  𝐹(𝑅𝑖
𝑛𝑒𝑤) < 𝐹(𝑅𝑏𝑒𝑠𝑡)  // Compare optimal fitness values 

            𝐹(𝑅𝑏𝑒𝑠𝑡) = 𝐹(𝑅𝑖
𝑛𝑒𝑤) // Record optimal fitness values 

            𝑅𝑏𝑒𝑠𝑡 = 𝑅𝑖
𝑛𝑒𝑤        // Record the current optimal agent 

         End If 
    End If 
End For 

𝑡 = 𝑡 + 1  
End While  

3.5 Proposed RIME algorithm 

In summary, firstly, inspired by the motion of soft-rime particles in this section, a unique stepwise 

search and exploitation approach is designed to propose a soft-rime search strategy as the core optimization-

seeking method of the algorithm. Immediately afterward, inspired by the crossover of hard-rime agents, a 

hard-rime puncture mechanism is proposed to achieve dimensional crossover interchange between ordinary 

and optimal agents, which is conducive to improving the solution accuracy of the algorithm. Finally, based 

on the greedy selection mechanism, an improved positive greedy selection mechanism is proposed to increase 

the diversity of the population and prevent the algorithm from falling into the local optimum as far as 

possible by changing the selection of optimal solutions. The overall structure of the algorithm in terms of 

pseudo-code and flow chart is shown in Algorithm 4 and Figure 6.  

Algorithm 4 Pseudo-code of  RIME 

Initialize the rime population 𝑅 
Get the current optimal agent and optimal fitness 

While  𝑡 ≤ 𝑇 
Coefficient of  adherence 𝐸 = (𝑡/𝑇)^0.5 

           If  𝑟2 < 𝐸 
      Update rime agent location by the soft-rime search strategy 
   End If 

   If  𝑟3 < 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑆𝑖  
      Cross updating between agents by the hard-rime puncture mechanism 
   End If 

   If 𝐹(𝑅𝑖
𝑛𝑒𝑤) < 𝐹(𝑅𝑖)  
Select the optimal solution and replace the suboptimal solution using the positive greedy 
selection mechanism 

End If 

𝑡 = 𝑡 + 1  
End While 

 



  

Figure 6. Flowchart of  RIME 

The complexity of  RIME mainly includes the soft-rime search strategy, the hard-rime puncture 

mechanism, the positive greedy selection mechanism, and the calculation of  the fitness value. First, the 

complexity level of  the soft-rime search mechanism is 𝑂(𝑛2). Then, the complexity level of  the hard-rime 

puncture mechanism in the two extreme cases is 𝑂(𝑛) and 𝑂(𝑛2). The complexity of  the positive greedy 

selection mechanism is 𝑂(𝑛). Finally, the complexity level of  the fitness value calculation is 𝑂(𝑛 ∗ 𝑙𝑜𝑔𝑛). 

Therefore, the overall complexity level of  the RIME algorithm is 𝑂(𝑅𝐼𝑀𝐸) = 𝑂((𝑛 + 𝑙𝑜𝑔𝑛) ∗ 𝑛).  

4 Experiments and results 

This section demonstrates the RIME algorithm's advantages and characteristics through experiments. 

Firstly, a qualitative analysis of  the RIME algorithm demonstrates the algorithm's characteristics in finding 

the optimal solution. Then, the performance advantages of  the algorithm are demonstrated experimentally 

by comparing the RIME algorithm with peer algorithms. Further, the parameter sensitivity analysis of  the 

RIME algorithm is used to determine the parameters of  RIME for different optimization problems to ensure 

maximum performance. Finally, the RIME algorithm is applied to five engineering optimization problems 

to demonstrate the algorithm's potential for application to practical optimization problems. 

To ensure fairness and reproducibility of  the experiments, all experiments in this paper were run in a 

unified environment where the software used was MATLAB 2017b and the core hardware was an Intel(R) 

Xeon(R) CPUE5-2660v3 (2.60GHz).  

4.1 Qualitative analysis of  RIME 

This subsection uses the classical 23 benchmark functions [52] to design four experiments for 



qualitatively analyzing the RIME algorithm concerning agents, dimensional particles, fitness values and 

iteration curves. 

First, to analyze the distribution of  optimal agents in the solution space of  the RIME algorithm in the 

optimization problem, the search characteristics of  the agents of  the algorithm are visualized. In this paper, 

experiments on the historical position of  agents are designed by recording the position of  the optimal agent 

for each iteration. Further, while analyzing the agent updates, the paper analyses the particles in the agents, 

i.e., the dimensionality of  the agent row vectors, to demonstrate the pattern and magnitude of  change of  

the particles. In this paper, particle change experiments are designed by recording the first particle of  the 

optimally solved agent at each iteration. Then, to analyze the changing trend of  the fitness value of  the 

algorithm after each iteration, this paper designs the fitness value change experiment by recording the optimal 

fitness value after each update. Finally, to analyze the algorithm's overall iteration trend, this paper records 

the fitness value of  the optimal solution after each iteration and designs an iteration curve experiment. In 

the experiments, the population size of  RIME is set to 30, the number of  iterations is 2000, and 30 iterations 

are independently parallel. 

Figure 7 shows the results of  RIME for the four qualitative experiments described above. In particular, 

the plots in the column of  Figure 7(a) represent the 3D location distribution of  all solutions for each 

benchmark function, and it is within this solution space that RIME searches for the optimal solution. Figure 

7(b) represents the two-dimensional location distribution of  RIME search histories. It can be seen that a 

small number of  historical optimal solutions are scattered within the solution space, and most of  the 

historical optimal solutions are clustered around the global optimal solution. This indicates that the RIME 

algorithm can find the approximate optimal solution within the solution space quickly and can enter the 

exploitation stage earlier to improve the accuracy of  the solution.  

Figure 7(c) records the trend of  the first dimension of  the RIME’s agent throughout the iterations. It 

can be seen that the RIME algorithm has very long search steps in F1, F3, F10, F11, F15, F18 due to the 

role of  the soft-rime search strategy in the early search phase, which is very beneficial for the algorithm to 

go out of  local optimality and find the global optimal solution. The hard-rime puncture mechanism plays a 

significant role in the later iterations of  the algorithm, resulting in shorter search steps, which helps to 

improve the accuracy of  the optimal solution. On the other hand, the agent dimensions also oscillate less 

with the number of  iterations. This facilitates the algorithm to converge quickly during the exploitation phase.  

Figure 7(d) records the optimal fitness values of  the RIME after each iteration. It can be seen that, 

again, due to the search agents of  the algorithm actively adjusting their search positions as they are updated, 

the fitness values for each iteration follow the agents with regular fluctuations. This indicates that the RIME 

algorithm is effective in searching for the optimal solution with agent updates, which is in line with the design 

of  the algorithm.  

Figure 7(e) shows the overall iterative convergence curve of  RIME. For most of  the tested functions, 

the algorithm improves the quality of  the solution as the number of  iterations increases and does not fall 

into a local optimum. Further, Figure 7(e) also shows that whether on simple single-peaked test functions 

such as F1 and F3 or complex multi-peaked and composite functions such as F7 and F13, RIME algorithms 

can search and develop incrementally during iterations through the combined action of  the soft-rime search 

strategy and hard-rime puncture mechanism, avoiding as much as possible the algorithm falling into the local 

optimum trap. 



In summary, the characteristics of  RIME include: 1) It can quickly find the global approximate optimal 

solution, centralize exploitation and improve solution accuracy. 2) While ensuring convergence speed, the 

search position is actively changed during updates to improve the algorithm's global exploration capability 

and ability to jump out of  local optima. 3) In the process of  finding the optimal solution, the RIME algorithm 

has a unique stepped exploration and exploitation approach, which allows the algorithm to continuously 

RIME algorithm has a unique stepped exploration and exploitation approach, which allows the algorithm to 

continuously switch between large-scale exploration and small-scale exploitation directly, allowing for both 

breadth and depth in the search for optimality. 



 

Figure 7. Qualitative analysis experiment of  RIME 



4.2 Performance comparison experiment of  RIME 

In this section, the RIME algorithm is compared with 10 classical algorithms and 10 high-performance 

improvement algorithms, respectively, to demonstrate the superiority of  the proposed algorithm among peer 

algorithms. It is worth mentioning that the algorithms are compared with a complete test set for the 

experiments to fully demonstrate the performance advantages and characteristics of  the algorithms.  

4.2.1 Classical algorithms performance comparison and analysis 

In this subsection, RIME is compared with 10 original highly-cited algorithms, including PSO [26], 

WOA [32], HHO [27], moth-flame optimization (MFO) [53], Jaya optimization algorithm (JAYA) [54], firefly 

algorithm (FA) [55], red fox optimization algorithm (RFO) [56], GWO [30], and BA [36], to demonstrate the 

superiority and reasonableness of  the proposed algorithm. The function test set for the comparison was 

adopted from IEEE CEC2017 [48], which is described in Table 1. This function set contains unimodal, 

multimodal, hybrid, and composition functions to assess each algorithm's performance under different 

optimization problems comprehensively. The starting population size of  all swarm intelligence algorithms is 

set to 30, the maximum number of  evaluations is set to 30,0000, and 30 comparison experiments are 

performed separately on this basis in order to ensure the fairness of  the experiments. The key parameters 

of  the algorithms used for the comparison were all adopted as default values, and details of  the parameters 

are given in Table 2.  

Table 1. Details of  the IEEE CEC2017 

 Functions 𝒇𝒎𝒊𝒏 

Unimodal 
Functions 

F1 Shifted and Rotated Bent Cigar Function 100 

F2 Shifted and Rotated Sum of  Different Power Function 200 

F3 Shifted and Rotated Zakharov Function 300 

Multimodal 
Functions 

F4 Shifted and Rotated Rosenbrocks Function 400 

F5 Shifted and Rotated Rastrigins Function 500 

F6 Shifted and Rotated Expanded Scaffers F6 Function 600 

F7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700 

F8 Shifted and Rotated Non-Continuous Rastrigins Function 800 

F9 Shifted and Rotated Levy Function 900 

F10 Shifted and Rotated Schwefels Function 1000 

Hybrid 
Functions 

F11 Hybrid Function 1 (N = 3) 1100 

F12 Hybrid Function 2 (N = 3) 1200 

F13 Hybrid Function 3 (N = 3) 1300 

F14 Hybrid Function 4 (N = 4) 1400 

F15 Hybrid Function 5 (N = 4) 1500 

F16 Hybrid Function 6 (N = 4) 1600 

F17 Hybrid Function 6 (N = 5) 1700 

F18 Hybrid Function 6 (N = 5) 1800 

F19 Hybrid Function 6 (N = 5) 1900 

F20 Hybrid Function 6 (N = 6) 2000 



Composition 
Functions 

F21 Composition Function 1 (N = 3) 2100 

F22 Composition Function 2 (N = 3) 2200 

F23 Composition Function 3 (N = 4) 2300 

F24 Composition Function 4 (N = 4) 2400 

F25 Composition Function 5 (N = 5) 2500 

F26 Composition Function 6 (N = 5) 2600 

F27 Composition Function 7 (N = 6) 2700 

F28 Composition Function 8 (N = 6) 2800 

F29 Composition Function 9 (N = 3) 2900 

F30 Composition Function 10 (N = 3) 3000 

 

Table 2. Key parameters of  each classical algorithm 

Algorithms Key parameters 

PSO 𝑐1 = 2; 𝑐2 = 2; 𝑉𝑚𝑎𝑥 = 6 

WOA 𝑎1 = [2,0]; 𝑎2 = [−2,−1]; 𝑏 = 1 

SCA 𝑎 = 2 

HHO 𝑘 = 0 

MFO 𝑏 = 1 

JAYA ~ 

FA 𝛼 = 0.5; 𝛽𝑚𝑖𝑛 = 0.2;  𝛾 = 1 

RFO 𝑐1 = 0.18; 𝑐2 = 0.82 

GWO 𝑎 = [2 0] 

BA 𝐴 = 0.5; 𝑟 = 0.5 

The experimental comparison results of  RIME with other classical algorithms are given in Table 3, 

where AVG and STD denote the mean and variance of  the algorithms after 30 independent runs, respectively, 

and the optimal values are bolded in each column. By comparing and observing the average values (AVG), 

it can be initially seen that for most of  the benchmark functions, RIME has the smallest average value. This 

indicates that RIME obtains relatively higher quality solutions when using RIME and similar algorithms to 

optimize the benchmark functions. It is particularly effective in the two types of  tests: hybrid and composite 

functions. This indicates that the RIME algorithm will have a stronger optimization ability when facing 

complex problems. Also, the optimal solution's standard deviation (STD) is smaller, indicating the high 

stability of  RIME in optimizing the benchmark functions.  

Table 3. Comparison results of  RIME and classic algorithms 

 F1  F2  F3  

 AVG STD AVG STD AVG STD 

RIME 9.5804E+03 7.2134E+03 1.1923E+03 2.9406E+03 3.0175E+02 7.8542E-01 

PSO 1.3314E+08 1.5266E+07 2.8201E+13 3.1302E+13 6.4339E+02 5.1363E+01 

WOA 2.8107E+06 2.1110E+06 4.9997E+21 1.4877E+22 1.5929E+05 6.5854E+04 

SCA 1.2402E+10 2.5992E+09 4.9734E+34 1.8293E+35 3.7533E+04 7.0872E+03 



HHO 1.0773E+07 1.9815E+06 9.8126E+11 1.9924E+12 4.5983E+03 1.9073E+03 

MFO 1.3056E+10 8.8314E+09 1.7391E+40 9.4287E+40 1.0056E+05 6.7313E+04 

JAYA 5.5345E+09 8.5545E+08 1.1693E+31 3.6259E+31 4.1615E+04 7.1914E+03 

FA 1.4385E+10 1.6036E+09 5.8984E+33 9.3635E+33 6.1052E+04 7.4163E+03 

RFO 3.9392E+06 7.3227E+05 2.4407E+02 2.7604E+01 3.1073E+02 1.6168E+00 

GWO 1.6828E+09 1.8882E+09 1.0966E+33 5.3786E+33 3.5221E+04 9.8938E+03 

BA 5.5668E+05 3.0421E+05 2.0000E+02 7.8717E-05 3.0011E+02 1.1557E-01 
 F4  F5  F6  

 AVG STD AVG STD AVG STD 

RIME 4.9309E+02 1.8031E+01 5.7601E+02 2.2968E+01 6.0033E+02 3.7670E-01 

PSO 4.8427E+02 2.0761E+01 7.4444E+02 3.0290E+01 6.5256E+02 1.3483E+01 

WOA 5.5550E+02 4.1366E+01 7.7923E+02 4.7730E+01 6.6949E+02 7.9739E+00 

SCA 1.3763E+03 2.1709E+02 7.7826E+02 2.2831E+01 6.4905E+02 5.2621E+00 

HHO 5.1296E+02 3.4899E+01 7.3322E+02 3.3309E+01 6.5935E+02 7.6759E+00 

MFO 1.1303E+03 5.5911E+02 7.1955E+02 4.7249E+01 6.4510E+02 1.4605E+01 

JAYA 7.6059E+02 5.8431E+01 7.4070E+02 1.6189E+01 6.2102E+02 3.1399E+00 

FA 1.3352E+03 1.2754E+02 7.5746E+02 1.0748E+01 6.4376E+02 2.6379E+00 

RFO 4.8961E+02 1.9568E+01 8.1102E+02 2.4516E+01 6.7407E+02 8.1524E+00 

GWO 5.7622E+02 6.3779E+01 6.0861E+02 3.5808E+01 6.0910E+02 5.1502E+00 

BA 4.7088E+02 3.3240E+01 8.2140E+02 6.7974E+01 6.6968E+02 1.1175E+01 
 F7  F8  F9  

 AVG STD AVG STD AVG STD 

RIME 8.2166E+02 2.0938E+01 8.8070E+02 2.0781E+01 1.2495E+03 5.2498E+02 

PSO 9.2237E+02 1.5451E+01 9.9408E+02 2.2937E+01 5.9619E+03 2.8103E+03 

WOA 1.2484E+03 9.6092E+01 1.0087E+03 5.2253E+01 7.5749E+03 2.3131E+03 

SCA 1.1262E+03 3.7943E+01 1.0465E+03 1.6814E+01 5.4451E+03 1.1343E+03 

HHO 1.2317E+03 5.3750E+01 9.6715E+02 2.2308E+01 6.7807E+03 8.1372E+02 

MFO 1.1371E+03 2.2217E+02 1.0210E+03 5.9242E+01 7.1988E+03 2.2853E+03 

JAYA 1.0279E+03 2.1959E+01 1.0319E+03 1.7385E+01 2.9897E+03 6.7114E+02 

FA 1.3769E+03 3.5341E+01 1.0555E+03 1.0116E+01 5.1681E+03 5.9236E+02 

RFO 1.3490E+03 2.3825E+01 1.0030E+03 1.2538E+01 7.3654E+03 3.2341E+02 

GWO 8.6641E+02 4.8510E+01 8.9915E+02 2.9336E+01 1.5974E+03 4.2114E+02 

BA 1.5731E+03 1.7582E+02 1.0545E+03 5.7951E+01 1.4170E+04 4.8362E+03 
 F10  F11  F12  

 AVG STD AVG STD AVG STD 

RIME 3.6038E+03 5.2470E+02 1.1810E+03 3.4567E+01 2.8309E+06 1.9095E+06 

PSO 6.1450E+03 6.1459E+02 1.2843E+03 4.1459E+01 2.5427E+07 1.1081E+07 

WOA 6.1178E+03 9.0644E+02 1.5206E+03 1.5114E+02 3.2674E+07 2.0903E+07 

SCA 8.1471E+03 3.2952E+02 2.0374E+03 2.8993E+02 1.2375E+09 3.3003E+08 

HHO 5.4451E+03 7.4591E+02 1.2580E+03 4.4123E+01 1.0311E+07 8.2110E+06 

MFO 5.7599E+03 7.8055E+02 5.2847E+03 4.9290E+03 2.2682E+08 5.4299E+08 

JAYA 7.9982E+03 3.3601E+02 1.9400E+03 1.2111E+02 1.6308E+08 4.9215E+07 

FA 8.0624E+03 2.6609E+02 3.4727E+03 5.8443E+02 1.2999E+09 2.5306E+08 

RFO 5.6638E+03 6.8758E+02 1.3122E+03 6.4424E+01 3.7778E+06 1.7836E+06 

GWO 3.9186E+03 8.0741E+02 1.8961E+03 7.5896E+02 5.1506E+07 7.9362E+07 

BA 5.7918E+03 7.3003E+02 1.2996E+03 6.9671E+01 2.1712E+06 1.7095E+06 
 F13  F14  F15  

 AVG STD AVG STD AVG STD 

RIME 2.0195E+04 1.9740E+04 1.4445E+04 9.4948E+03 1.2729E+04 1.2769E+04 

PSO 4.6558E+06 1.3021E+06 7.9138E+03 4.3340E+03 4.8684E+05 2.0279E+05 

WOA 1.4767E+05 8.2769E+04 9.3807E+05 1.0729E+06 7.1529E+04 5.4310E+04 



SCA 4.4614E+08 1.7742E+08 1.5968E+05 6.7378E+04 1.3869E+07 1.4377E+07 

HHO 4.6237E+05 6.7301E+05 4.6630E+04 4.3951E+04 5.5770E+04 3.2295E+04 

MFO 4.6197E+07 1.9297E+08 1.3446E+05 3.0942E+05 5.9342E+04 7.7794E+04 

JAYA 7.1447E+06 8.5011E+06 7.8174E+04 3.7041E+04 5.0073E+06 3.5533E+06 

FA 6.0412E+08 1.8395E+08 1.8178E+05 7.4326E+04 5.4324E+07 2.7645E+07 

RFO 2.4666E+05 8.2477E+04 5.9472E+03 3.2379E+03 4.7253E+04 4.2734E+04 

GWO 7.1581E+05 3.4247E+06 3.5769E+05 4.4808E+05 4.4043E+05 8.5266E+05 

BA 2.9030E+05 1.1951E+05 6.8898E+03 3.5489E+03 1.1333E+05 7.4812E+04 
 F16  F17  F18  

 AVG STD AVG STD AVG STD 

RIME 2.3576E+03 2.9134E+02 2.1068E+03 2.0841E+02 2.6204E+05 2.2238E+05 

PSO 2.9371E+03 2.2493E+02 2.3422E+03 2.2483E+02 2.2434E+05 1.2218E+05 

WOA 3.5541E+03 4.8106E+02 2.5624E+03 3.0007E+02 1.9549E+06 2.4697E+06 

SCA 3.5168E+03 1.8627E+02 2.4102E+03 1.7040E+02 3.2410E+06 2.0991E+06 

HHO 3.3004E+03 3.5712E+02 2.5555E+03 2.4492E+02 1.1565E+06 1.2753E+06 

MFO 3.2299E+03 4.7370E+02 2.5450E+03 2.5851E+02 2.6155E+06 6.2305E+06 

JAYA 3.4839E+03 2.2796E+02 2.2719E+03 1.2107E+02 1.5997E+06 7.5998E+05 

FA 3.4792E+03 1.7379E+02 2.5219E+03 9.8800E+01 3.6239E+06 1.5653E+06 

RFO 3.4554E+03 3.8052E+02 2.9013E+03 2.4925E+02 1.7542E+05 1.1282E+05 

GWO 2.4374E+03 2.8542E+02 2.0152E+03 1.7117E+02 6.9407E+05 1.0938E+06 

BA 3.5269E+03 3.9964E+02 2.9396E+03 3.1693E+02 2.0367E+05 1.6370E+05 
 F19  F20  F21  

 AVG STD AVG STD AVG STD 

RIME 1.5373E+04 1.2402E+04 2.3669E+03 1.7074E+02 2.3901E+03 2.4583E+01 

PSO 1.2475E+06 6.9784E+05 2.6641E+03 2.1226E+02 2.5358E+03 3.0860E+01 

WOA 3.3182E+06 2.2738E+06 2.7634E+03 1.8496E+02 2.5622E+03 6.1058E+01 

SCA 2.5395E+07 1.2434E+07 2.5986E+03 1.0194E+02 2.5463E+03 2.5507E+01 

HHO 3.2830E+05 2.3979E+05 2.6562E+03 1.6920E+02 2.5420E+03 3.6672E+01 

MFO 3.8355E+07 6.7784E+07 2.8191E+03 2.3722E+02 2.5091E+03 5.2703E+01 

JAYA 1.0494E+06 9.4399E+05 2.5746E+03 9.2331E+01 2.5209E+03 1.7669E+01 

FA 9.6165E+07 4.4732E+07 2.5791E+03 8.7855E+01 2.5356E+03 1.3861E+01 

RFO 3.5194E+05 1.1079E+05 3.0401E+03 2.1264E+02 2.7028E+03 5.9751E+01 

GWO 1.5936E+06 5.8665E+06 2.3647E+03 1.3992E+02 2.3834E+03 1.7447E+01 

BA 5.1032E+05 2.2591E+05 2.9427E+03 2.3784E+02 2.6243E+03 6.7220E+01 
 F22  F23  F24  

 AVG STD AVG STD AVG STD 

RIME 4.2239E+03 1.5682E+03 2.7365E+03 1.8629E+01 2.9257E+03 2.9612E+01 

PSO 5.2287E+03 2.7456E+03 3.0874E+03 1.3678E+02 3.2057E+03 1.2571E+02 

WOA 6.9475E+03 2.2223E+03 3.0387E+03 9.9496E+01 3.1911E+03 9.0082E+01 

SCA 8.0561E+03 2.5967E+03 2.9908E+03 2.4687E+01 3.1644E+03 3.1794E+01 

HHO 6.6730E+03 1.7111E+03 3.1100E+03 9.0558E+01 3.4388E+03 1.4129E+02 

MFO 6.3740E+03 1.4784E+03 2.8358E+03 3.7546E+01 2.9920E+03 3.2696E+01 

JAYA 2.8174E+03 1.0209E+02 2.9738E+03 2.7612E+01 3.1217E+03 2.3897E+01 

FA 3.8185E+03 1.4241E+02 2.9138E+03 1.2340E+01 3.0676E+03 8.1560E+00 

RFO 7.6364E+03 1.0924E+03 3.5217E+03 1.8542E+02 3.6856E+03 1.2303E+02 

GWO 4.2857E+03 1.5323E+03 2.7550E+03 3.2269E+01 2.9226E+03 4.5536E+01 

BA 7.2071E+03 1.1670E+03 3.3206E+03 1.3970E+02 3.3316E+03 1.1799E+02 
 F25  F26  F27  

 AVG STD AVG STD AVG STD 

RIME 2.8927E+03 1.5766E+01 4.4899E+03 5.1474E+02 3.2181E+03 1.0031E+01 

PSO 2.8993E+03 2.1279E+01 4.9571E+03 1.8904E+03 3.2074E+03 9.8242E+01 



WOA 2.9404E+03 2.9837E+01 7.7229E+03 1.0704E+03 3.3535E+03 8.2366E+01 

SCA 3.1891E+03 7.2299E+01 6.8750E+03 2.5913E+02 3.3947E+03 4.4983E+01 

HHO 2.9094E+03 2.2130E+01 7.1835E+03 1.3243E+03 3.3723E+03 9.3578E+01 

MFO 3.4128E+03 4.9598E+02 5.9231E+03 5.4183E+02 3.2573E+03 2.3904E+01 

JAYA 2.9688E+03 3.4983E+01 6.4129E+03 1.1156E+03 3.3425E+03 2.8685E+01 

FA 3.5915E+03 1.0366E+02 6.5039E+03 1.7301E+02 3.3328E+03 1.4703E+01 

RFO 2.8851E+03 2.5985E+00 8.9678E+03 2.8832E+03 4.0247E+03 4.2215E+02 

GWO 2.9860E+03 8.3395E+01 4.6921E+03 3.4722E+02 3.2415E+03 2.2852E+01 

BA 2.9083E+03 2.2836E+01 8.7783E+03 2.2941E+03 3.4475E+03 1.3312E+02 
 F28  F29  F30  

 AVG STD AVG STD AVG STD 

RIME 3.2196E+03 3.0021E+01 3.6373E+03 1.7649E+02 1.9725E+04 1.6175E+04 

PSO 3.2434E+03 2.4562E+01 4.2038E+03 2.7344E+02 3.4727E+06 1.1923E+06 

WOA 3.3088E+03 3.4525E+01 4.6856E+03 3.9778E+02 1.3140E+07 7.7038E+06 

SCA 3.8213E+03 1.4647E+02 4.6475E+03 2.3773E+02 7.7593E+07 2.5040E+07 

HHO 3.2477E+03 2.7953E+01 4.3875E+03 3.3960E+02 1.6623E+06 8.2072E+05 

MFO 4.3886E+03 8.6819E+02 4.1165E+03 2.4830E+02 1.1625E+06 3.3423E+06 

JAYA 3.5723E+03 5.1373E+01 4.4949E+03 1.4332E+02 1.4591E+07 4.3065E+06 

FA 3.8878E+03 8.2484E+01 4.6902E+03 1.6766E+02 8.6619E+07 3.5259E+07 

RFO 3.1636E+03 5.1017E+01 4.8604E+03 4.2929E+02 1.3091E+06 5.9054E+05 

GWO 3.4274E+03 1.7747E+02 3.7504E+03 1.7169E+02 7.9304E+06 5.5896E+06 

BA 3.1329E+03 5.7041E+01 5.0284E+03 6.2577E+02 1.0898E+06 7.2594E+05 

We further investigated the experimental data using Wilcoxon signed-rank test and Friedman test in 

order to demonstrate the validity of  the RIME experimental results and improve the comprehension of  the 

experimental results. The Wilcoxon signed-rank results are shown in Table 4, where '+' denotes that RIME 

performs better than other algorithms, '-' denotes that RIME performs worse than other algorithms, '=' 

denotes that RIME performs equally well as other algorithms, Mean denotes the average ranking following 

30 iterations of  parallelization, and Rank denotes the overall final ranking. According to Table 4's findings, 

RIME outperforms the competition in at least 23 out of  30 function assessment trials. The average rating 

demonstrates that RIME outperforms its rival algorithms by a wide margin. Moreover, the RIME algorithm 

has tremendous advantages over HHO, WOA, JAYA, and other popular algorithms in recent years. 

Figure 8 displays the results of  the Friedman test, which is also utilized for comparison analysis with 

the Wilcoxon test in order to further confirm the validity of  the Wilcoxon signed-rank test and the accuracy 

of  the experiments. Figure 8 illustrates that both approaches are useful for validating experiment findings, 

despite a tiny variance in the average ranking of  the Friedman and Wilcoxon test and essentially identical 

rankings for each algorithm. After the two testing approaches, it is clear that RIME is a very effective 

metaheuristic optimization algorithm and outperforms the new algorithm of  its competitors. 

Table 4. Wilcoxon signed-rank test results of  RIME and classic algorithms 

Algorithms +/−/= Mean Rank 

RIME ~ 1.77 1 

PSO 23/2/5 4.93 3 

WOA 30/0/0 7.47 9 

SCA 30/0/0 8.27 11 

HHO 30/0/0 5.53 4 



MFO 30/0/0 6.67 8 

JAYA 29/0/1 6.13 5 

FA 29/1/0 8.10 10 

RFO 23/4/3 6.23 6 

GWO 23/0/7 4.33 2 

BA 23/5/2 6.47 7 

 

Figure 8. Friedman test results of  RIME and classic algorithms 

The fitness values produced from each evaluation are documented in this work, and the findings are 

displayed in Figure 9 to highlight the trend of  the RIME algorithm's fitness values in comparison to other 

comparable algorithms. To analyze the iterative process of  the algorithm as thoroughly as possible, the 12 

functions in the picture are selected from a set of  30 functions in the following order: Unimodal Functions, 

Multimodal Functions, Hybrid Functions, and Composition Functions. Figure 9 illustrates how RIME 

outperforms other algorithms in pre-searching for functions F5, F6, F7, F9, and F19. On the functions of  

F13, F16, and F30, it is clear that RIME updates to a superior solution even in the late stages of  the 

optimization search, demonstrating that it has a strong exploitation potential. Additionally, RIME 

outperforms competing algorithms in the F1, F13, and F26 functions' exploration and exploitation phases. 

Thus, by integrating the aforementioned experimental findings, it can be demonstrated that RIME is a 

metaheuristic optimization algorithm with strong performance and has robust exploration and exploitation 

capabilities. 



    

Figure 9. Convergence curves of  RIME and excellent algorithms 

To illustrate that the time complexity of  the RIME algorithm is acceptable, in this experiment, we also 

selected F1, F4, F11, and F12 from the four classes of  test functions to fully evaluate the time spent by 

RIME in terms of  CPU runtime records. Figure 10 shows the experiment results, and it can be seen that the 

time spent by the RIME algorithm is at the same level as most of  its peer algorithms, such as PSO and SCA, 

for both simple and complex functions and is much better than Jaya and FA. It can be said that the time 

complexity of  the RIME algorithm is at a normal level and completely acceptable. Combining the above 

algorithm comparison experiments and time complexity experiments, the RIME algorithm performs better 

at the same level of  computational complexity and is an excellent algorithm with very high efficiency in 

finding the best. 



 

Figure 10. Time spent for each algorithm 

4.2.2 High-performance algorithms comparison and analysis 

To further verify the optimization performance of  RIME and demonstrate the innovation and 

superiority of  RIME, this section compares RIME with 10 high-performance improvement algorithms. The 

compared algorithms are the latest optimization algorithms in the last five years, which include: enhanced 

GWO with a new hierarchical structure (IGWO) [57], opposition-based sine cosine algorithm (OBSCA) [58], 

double adaptive random spare reinforced whale optimization algorithm (RDWOA) [59], fruit fly optimizer 

(FOA) with multi-population outpost mechanism (MOFOA) [60], boosted GWO (OBLGWO) [61], hybrid 

bat algorithm (RCBA) [62], A-C parametric WOA (ACWOA) [63], modified sine cosine algorithm (m_SCA) 

[64], sine cosine algorithm with differential evolution (SCADE) [65] and balanced whale optimization 

algorithm (BWOA) [66]. Again, the test set is used IEEE CEC2017, the population size of  all algorithms is 

set to 30, the number of  evaluations is 30,000, and they run independently 30 times. Table 5 gives the detailed 

parameters of  the improved algorithms.  

Table 5. Key parameters of  the high-performance algorithms 

Algorithms Key parameters 

IGWO 𝛽𝑛𝑢𝑚 = 10; 𝛺𝑛𝑢𝑚 = 15 

OBSCA 𝑎 = 2 

RDWOA 𝑆 = 0 



MOFOA 𝑀 = 3 

OBLGWO 𝑃 = 0.5 

RCBA 𝑄𝑚𝑖𝑛 = 0;𝑄𝑚𝑎𝑥 = 2; 𝑟 = 0.5 

ACWOA 𝑎1 = [2,0]; 𝑎2 = [−2,−1]; 𝑏 = 1 

m_SCA 𝐽𝑅 = 0.1;  𝑎 = 2;  𝑆𝑅 = random in [0,1] 

SCADE 𝑎 = 2;  𝐹 = random in [0.2, 0.8]; 𝑃𝑐 = 0.8 

BWOA 𝑚 = 2500 

Table 6 displays the precise findings of  the comparative trials, with bolded data denoting the best 

outcomes of  the same category. Table 6 shows that RIME does very well on the large majority of  the test 

functions. RIME has a higher AVG in comparison to other high-performance algorithms, which suggests 

that RIME performs optimizations well. Additionally, RIME performs well in STD, demonstrating that it is 

more stable than other algorithms introduced in recent years in optimizing the same class of  problems. 

Table 6. Comparison results of  RIME and high-performance algorithms 

 F1  F2  F3  

 AVG STD AVG STD AVG STD 

RIME 5.8376E+03 6.4529E+03 2.1910E+02 4.9314E+01 3.0013E+02 5.5803E-02 

IGWO 1.3989E+06 6.9537E+05 9.8063E+12 1.6862E+13 1.3858E+03 7.3587E+02 

OBSCA 1.6675E+10 3.0109E+09 6.1079E+35 1.5159E+36 6.0471E+04 7.5002E+03 

RDWOA 5.9995E+06 9.7611E+06 2.3378E+16 5.0855E+16 2.1105E+04 5.1995E+03 

MOFOA 5.2108E+10 2.4626E+09 1.8926E+47 9.7268E+47 8.0549E+04 2.3698E+03 

OBLGWO 1.3839E+07 1.0539E+07 4.6568E+16 1.8456E+17 2.0004E+04 5.7670E+03 

RCBA 1.7511E+04 5.1644E+03 2.0000E+02 1.3353E-03 3.0103E+02 2.5320E-01 

ACWOA 5.1816E+09 2.5997E+09 1.6986E+33 6.1741E+33 4.8553E+04 9.6579E+03 

m_SCA 6.6292E+09 2.3633E+09 4.0891E+32 2.0530E+33 2.6172E+04 7.3251E+03 

SCADE 2.0052E+10 2.4986E+09 7.6933E+37 2.4719E+38 6.0489E+04 6.1191E+03 

BWOA 1.5777E+08 9.7275E+07 1.6784E+25 6.4473E+25 5.3285E+04 8.8340E+03 
 F4  F5  F6  

 AVG STD AVG STD AVG STD 

RIME 4.8772E+02 1.5712E+01 5.7639E+02 2.2909E+01 6.0059E+02 5.8799E-01 

IGWO 5.0217E+02 3.0400E+01 6.2323E+02 2.8940E+01 6.2325E+02 5.1581E+00 

OBSCA 2.6869E+03 9.1507E+02 8.0199E+02 2.0290E+01 6.5620E+02 4.6450E+00 

RDWOA 5.2527E+02 3.1569E+01 6.8649E+02 4.2708E+01 6.1298E+02 5.3047E+00 

MOFOA 1.3203E+04 1.3283E+03 9.5427E+02 1.6627E+01 7.0279E+02 6.7661E+00 

OBLGWO 5.2535E+02 4.0151E+01 6.6382E+02 3.5159E+01 6.2125E+02 1.6160E+01 

RCBA 4.8674E+02 2.8815E+01 8.2745E+02 6.9732E+01 6.7010E+02 1.0543E+01 

ACWOA 1.2482E+03 7.3025E+02 8.0811E+02 3.0716E+01 6.6640E+02 7.6102E+00 

m_SCA 7.0641E+02 1.1813E+02 6.5511E+02 2.7691E+01 6.2693E+02 6.7888E+00 

SCADE 3.8498E+03 1.0234E+03 8.2457E+02 2.0371E+01 6.6019E+02 6.3195E+00 

BWOA 6.0688E+02 6.6016E+01 7.8063E+02 3.1820E+01 6.6483E+02 6.5169E+00 
 F7  F8  F9  

 AVG STD AVG STD AVG STD 

RIME 7.9963E+02 2.1184E+01 8.7700E+02 2.1810E+01 1.0696E+03 3.7541E+02 

IGWO 8.9658E+02 4.0958E+01 8.9369E+02 2.4882E+01 2.9025E+03 1.0144E+03 

OBSCA 1.1758E+03 3.0053E+01 1.0683E+03 1.5228E+01 6.4394E+03 1.0198E+03 



RDWOA 9.8240E+02 6.0061E+01 9.7349E+02 3.6018E+01 5.0806E+03 1.2084E+03 

MOFOA 1.3970E+03 2.2965E+01 1.1591E+03 1.5023E+01 1.3368E+04 1.2527E+03 

OBLGWO 9.1861E+02 6.1457E+01 9.5468E+02 3.1462E+01 2.4861E+03 1.2079E+03 

RCBA 1.8733E+03 3.6096E+02 1.0579E+03 6.0709E+01 7.9668E+03 2.2970E+03 

ACWOA 1.2376E+03 6.2383E+01 1.0159E+03 2.4117E+01 6.8550E+03 7.0060E+02 

m_SCA 9.9897E+02 4.6377E+01 9.3181E+02 2.5586E+01 3.2791E+03 8.3761E+02 

SCADE 1.1783E+03 3.5463E+01 1.0811E+03 1.8776E+01 8.4005E+03 1.4170E+03 

BWOA 1.2496E+03 7.8099E+01 9.9055E+02 2.3064E+01 6.3508E+03 8.5353E+02 
 F10  F11  F12  

 AVG STD AVG STD AVG STD 

RIME 3.9839E+03 6.6878E+02 1.2391E+03 4.6442E+01 2.2284E+06 2.2159E+06 

IGWO 4.8145E+03 7.8161E+02 1.2606E+03 3.5025E+01 1.2798E+07 8.7528E+06 

OBSCA 7.3083E+03 4.0009E+02 2.5741E+03 4.7116E+02 2.0915E+09 6.7000E+08 

RDWOA 4.8260E+03 6.5146E+02 1.2434E+03 4.3310E+01 3.2776E+06 2.0082E+06 

MOFOA 8.7002E+03 2.5087E+02 8.4740E+03 7.6555E+02 1.7508E+10 1.9279E+09 

OBLGWO 5.3387E+03 8.1183E+02 1.2995E+03 4.9329E+01 1.9103E+07 1.3096E+07 

RCBA 5.8131E+03 6.0098E+02 1.3123E+03 7.8185E+01 1.7800E+06 1.3121E+06 

ACWOA 6.6610E+03 8.9372E+02 3.1592E+03 1.0195E+03 6.1396E+08 4.4073E+08 

m_SCA 4.8807E+03 6.3746E+02 1.6609E+03 4.9275E+02 2.5046E+08 2.1138E+08 

SCADE 8.1992E+03 2.8308E+02 3.3444E+03 6.0852E+02 1.9867E+09 5.0948E+08 

BWOA 6.4210E+03 8.3835E+02 1.7806E+03 2.8912E+02 9.7624E+07 9.9516E+07 
 F13  F14  F15  

 AVG STD AVG STD AVG STD 

RIME 2.9856E+04 2.4760E+04 1.3001E+04 7.8818E+03 1.1817E+04 1.1376E+04 

IGWO 1.7023E+05 1.8778E+05 5.2894E+04 3.8472E+04 4.8861E+04 3.0935E+04 

OBSCA 5.5072E+08 2.4407E+08 2.5199E+05 1.6271E+05 1.1552E+07 1.1375E+07 

RDWOA 1.9858E+04 1.9627E+04 9.0743E+04 8.0830E+04 8.4086E+03 8.2873E+03 

MOFOA 1.8822E+10 3.8288E+09 3.6276E+06 2.3694E+06 5.7079E+08 1.6863E+08 

OBLGWO 1.8567E+05 1.1389E+05 6.6703E+04 5.4086E+04 8.1110E+04 4.8503E+04 

RCBA 1.2279E+05 9.7040E+04 6.9868E+03 3.4648E+03 3.7671E+04 2.5330E+04 

ACWOA 9.5806E+07 1.3412E+08 1.0400E+06 7.9027E+05 1.0343E+07 1.2890E+07 

m_SCA 7.5740E+07 1.1679E+08 6.5479E+04 7.6512E+04 3.5697E+05 8.2313E+05 

SCADE 6.9404E+08 2.5238E+08 3.1116E+05 1.6635E+05 7.9280E+06 8.5614E+06 

BWOA 2.3145E+05 1.0493E+05 1.0928E+06 1.2286E+06 1.2977E+05 1.8734E+05 
 F16  F17  F18  

 AVG STD AVG STD AVG STD 

RIME 2.2711E+03 2.2170E+02 2.1075E+03 1.9261E+02 1.6290E+05 1.2837E+05 

IGWO 2.5519E+03 2.9638E+02 1.9955E+03 1.5673E+02 6.2444E+05 4.8305E+05 

OBSCA 3.8369E+03 2.2585E+02 2.6360E+03 1.5899E+02 2.9471E+06 1.7147E+06 

RDWOA 2.7996E+03 2.5788E+02 2.2662E+03 2.4641E+02 7.2215E+05 1.0537E+06 

MOFOA 6.3529E+03 5.8327E+02 5.4192E+03 1.2279E+03 3.8450E+07 1.2148E+07 

OBLGWO 2.8484E+03 3.3815E+02 2.2020E+03 1.9019E+02 1.0999E+06 7.1909E+05 

RCBA 3.3484E+03 3.4262E+02 2.8846E+03 4.2768E+02 1.9019E+05 1.1156E+05 

ACWOA 3.9149E+03 3.2707E+02 2.4773E+03 2.2359E+02 3.0769E+06 3.0777E+06 

m_SCA 2.5218E+03 3.0428E+02 2.0132E+03 1.3314E+02 9.5746E+05 9.9834E+05 

SCADE 3.8650E+03 2.3939E+02 2.5317E+03 1.1903E+02 4.0667E+06 2.3328E+06 

BWOA 3.7037E+03 4.5284E+02 2.6189E+03 2.6606E+02 5.6346E+06 5.1778E+06 
 F19  F20  F21  

 AVG STD AVG STD AVG STD 

RIME 1.6614E+04 1.5110E+04 2.3203E+03 1.5896E+02 2.3771E+03 1.9593E+01 

IGWO 3.7603E+05 3.2615E+05 2.3551E+03 1.4154E+02 2.3948E+03 2.4129E+01 



OBSCA 4.4403E+07 2.5480E+07 2.6244E+03 1.3004E+02 2.4236E+03 8.3912E+01 

RDWOA 1.0005E+04 1.3451E+04 2.4795E+03 1.7736E+02 2.5007E+03 4.8569E+01 

MOFOA 1.0868E+09 3.0378E+08 3.0519E+03 1.1522E+02 2.7775E+03 2.2862E+01 

OBLGWO 5.0681E+05 6.4460E+05 2.4566E+03 1.7609E+02 2.4565E+03 3.8460E+01 

RCBA 1.2721E+04 8.0851E+03 2.9417E+03 2.6111E+02 2.6205E+03 7.1041E+01 

ACWOA 8.6972E+06 5.7102E+06 2.6706E+03 1.8153E+02 2.5818E+03 3.8522E+01 

m_SCA 1.5388E+06 2.3867E+06 2.3756E+03 1.3278E+02 2.4347E+03 3.2932E+01 

SCADE 2.7261E+07 1.0016E+07 2.7079E+03 1.0528E+02 2.5714E+03 3.9982E+01 

BWOA 3.6274E+06 3.4117E+06 2.6563E+03 2.0011E+02 2.5887E+03 5.0138E+01 
 F22  F23  F24  

 AVG STD AVG STD AVG STD 

RIME 4.3050E+03 1.5896E+03 2.7244E+03 2.1135E+01 2.9052E+03 2.2829E+01 

IGWO 2.3108E+03 1.6884E+00 2.7806E+03 2.6002E+01 2.9449E+03 2.8086E+01 

OBSCA 4.1421E+03 3.5241E+02 3.0191E+03 3.4235E+01 3.1814E+03 3.9838E+01 

RDWOA 6.3287E+03 1.3231E+03 2.8714E+03 5.8665E+01 3.1316E+03 7.9750E+01 

MOFOA 9.0719E+03 4.2978E+02 3.7244E+03 1.6932E+02 3.8952E+03 1.8405E+02 

OBLGWO 2.9586E+03 1.6334E+03 2.8178E+03 5.2717E+01 2.9719E+03 4.1930E+01 

RCBA 7.4649E+03 8.9248E+02 3.3384E+03 1.9761E+02 3.3938E+03 2.1785E+02 

ACWOA 5.0141E+03 2.3420E+03 3.0647E+03 6.4532E+01 3.1875E+03 8.7515E+01 

m_SCA 5.2543E+03 1.5849E+03 2.7954E+03 2.9614E+01 2.9681E+03 4.2059E+01 

SCADE 4.5540E+03 4.1106E+02 3.0043E+03 2.7426E+01 3.1688E+03 3.3825E+01 

BWOA 6.3444E+03 2.4505E+03 3.0898E+03 1.1085E+02 3.1913E+03 9.8830E+01 
 F25  F26  F27  

 AVG STD AVG STD AVG STD 

RIME 2.8910E+03 8.2019E+00 4.4704E+03 2.1631E+02 3.2203E+03 1.3727E+01 

IGWO 2.9043E+03 1.5166E+01 4.7592E+03 2.4323E+02 3.2355E+03 1.3804E+01 

OBSCA 3.3441E+03 1.1336E+02 6.9962E+03 6.6377E+02 3.4521E+03 4.4524E+01 

RDWOA 2.9196E+03 2.7728E+01 5.9250E+03 1.0540E+03 3.2533E+03 1.9719E+01 

MOFOA 4.9416E+03 1.4000E+02 1.0966E+04 3.0380E+02 4.7214E+03 2.8587E+02 

OBLGWO 2.9182E+03 2.9059E+01 5.3068E+03 6.3271E+02 3.2428E+03 1.9888E+01 

RCBA 2.9014E+03 2.4477E+01 9.5235E+03 1.8368E+03 3.4434E+03 1.5086E+02 

ACWOA 3.1289E+03 3.5826E+01 7.5683E+03 9.4723E+02 3.4330E+03 1.1230E+02 

m_SCA 3.0538E+03 7.8352E+01 5.2734E+03 3.4912E+02 3.2589E+03 2.7386E+01 

SCADE 3.4265E+03 8.6793E+01 7.4286E+03 3.1302E+02 3.4541E+03 5.2577E+01 

BWOA 3.0109E+03 3.7316E+01 8.0170E+03 1.0923E+03 3.3854E+03 7.3306E+01 
 F28  F29  F30  

 AVG STD AVG STD AVG STD 

RIME 3.2151E+03 3.9526E+01 3.6612E+03 1.7953E+02 1.8176E+04 8.3621E+03 

IGWO 3.2542E+03 2.6751E+01 3.8293E+03 1.9432E+02 4.3596E+06 2.7233E+06 

OBSCA 4.1871E+03 2.2509E+02 4.9922E+03 2.4776E+02 1.2769E+08 4.7840E+07 

RDWOA 3.2680E+03 2.8965E+01 3.9419E+03 2.3247E+02 2.1042E+04 1.0220E+04 

MOFOA 6.8872E+03 2.5442E+02 8.0642E+03 8.6987E+02 3.4099E+09 1.1149E+09 

OBLGWO 3.2772E+03 4.2033E+01 4.0081E+03 2.5554E+02 2.6581E+06 1.6303E+06 

RCBA 3.1740E+03 6.5055E+01 4.9038E+03 4.1341E+02 1.7922E+05 1.0487E+05 

ACWOA 3.7542E+03 2.4233E+02 4.8017E+03 3.2791E+02 6.5433E+07 4.4222E+07 

m_SCA 3.4832E+03 9.2865E+01 3.8830E+03 1.7973E+02 8.1453E+06 7.8817E+06 

SCADE 4.3014E+03 2.2969E+02 5.1153E+03 2.4847E+02 9.6796E+07 3.5657E+07 

BWOA 3.3961E+03 5.0166E+01 5.1008E+03 5.0841E+02 2.1122E+07 1.4786E+07 

Similarly, in Table 7, the benchmark function optimization performance between RIME and other 

classes of  algorithms is further analyzed in this paper using the Wilcoxon signed rank test. Further, one can 



see that the RIME algorithm has the same large advantage over emerging high-performance optimization 

algorithms such as SCADE and IGWO, with RIME outperforming the other algorithms in at least 22 of  the 

30 tested functions. 

Figure 11 uses the Friedman test to further assess the experimental outcomes for the benchmark 

functions. As can be seen, the RIME algorithm continues to receive the highest overall ranking. The 

examination of  the Friedman test and the Wilcoxon signed-rank test demonstrates that RIME still has a 

significant edge over the most recent algorithms. 

Table 7. Wilcoxon signed-rank test results of  RIME and high-performance algorithms 

Algorithms +/−/= Mean Rank 

RIME ~ 1.47 1 

IGWO 27/2/1 2.73 2 

OBSCA 29/0/1 7.83 8 

RDWOA 25/2/3 4.03 3 

MOFOA 30/0/0 10.97 11 

OBLGWO 29/1/0 4.27 4 

RCBA 22/3/5 5.80 6 

ACWOA 29/0/1 7.87 9 

m_SCA 28/0/2 4.97 5 

SCADE 29/0/1 8.70 10 

BWOA 30/0/0 7.37 7 

 

Figure 11. Friedman test results of  RIME and high-performance algorithms 

The convergence curves for RIME and other comparable methods for various functions are shown in 

Figure 12. As can be seen from the convergence curves, although while RIME converges a little more slowly 

than the other algorithms in the first stage, it produces solutions of  higher quality than the other algorithms 



when optimizing the benchmark functions F1, F5, F7, F9, F18, and F30. High-quality solutions are achieved 

while optimizing F1 and F18, and the algorithm clearly jumps out of  the locally optimum inflection point. 

It can be observed that RIME not only achieves high-quality solutions but also converges more quickly than 

other algorithms while optimizing F6, F16, F20, F21, F23, and F26. RIME has a strong capacity to leap out 

of  the local optimal solution, a strong ability to find high-quality solutions, and a faster convergence speed, 

according to the study of  the benchmark function results done above. 

 

Figure 12. Convergence curves of  RIME and high-performance algorithms 



4.2.3 Comparative analysis based on the IEEE CEC 2022 test set 

To further demonstrate the novelty and superiority of  the RIME algorithm, this subsection uses the 

latest CEC2022 test set [49] to experiment with the algorithm, as shown in Table 8. This experiment 

compares the RIME algorithm with the above 10 algorithms, which include five classical algorithms: PSO, 

GWO, HHO, MFO, WOA, and five improved algorithms: OBSCA, MOFOA, ACWOA, SCADE, and 

BWOA. In the experiment, the population size is set to 30, the dimension is set to 20 (default value), and the 

same is run 30 times independently with 200,000 evaluations each time. The key parameters of  each 

algorithm are set as in the above experiments. 

Table 8. Details of  the IEEE CEC2022 

 Functions 𝒇𝒊 

Unimodal 
Functions 

F1 Shifted and full Rotated Zakharov Function 300 

Multimodal 
Functions 

F2 Shifted and full Rotated Rosenbrock’s Function 400 

F3 Shifted and full Rotated Expanded Schaffer’s f6 Function 600 

F4 Shifted and full Rotated Non-Continuous Rastrigin’s Function 800 

F5 Shifted and full Rotated Levy Function 900 

Hybrid 
Functions 

F6 Hybrid Function 1 (N = 3) 1800 

F7 Hybrid Function 2 (N = 6) 2000 

F8 Hybrid Function 3 (N = 5) 2200 

Composition 
Functions 

F9 Composition Function 1 (N = 5) 2300 

F10 Composition Function 2 (N = 4) 2400 

F11 Composition Function 3 (N = 5) 2600 

F12 Composition Function 4 (N = 6) 2700 

The average and standard deviation of  the experimental results for 30 independent runs are shown in 

Table 9. It can be seen that the overall performance of  the RIME algorithm remains excellent in the state-

of-the-art test set. The AVG of  the RIME algorithm is better than other algorithms, such as PSO and GWO, 

which indicates that the algorithm can still maintain a high level of  optimization performance for new 

optimization problems. In addition, the STD of  RIME after running is also minimal under most problems, 

which indicates that the algorithm is also very stable in the face of  new problems. 

Table 9. Comparative results of  RIME and peer algorithms in IEEE CEC2022 

 F1  F2  F3  

 AVG STD AVG STD AVG STD 

RIME 3.0000E+02 2.7715E-04 4.4880E+02 1.7606E+01 6.0006E+02 1.1498E-01 

PSO 3.7700E+02 1.2809E+01 4.3169E+02 2.4364E+01 6.3999E+02 1.4807E+01 

GWO 7.9510E+03 3.6565E+03 4.9367E+02 3.8953E+01 6.0456E+02 4.0695E+00 

HHO 3.2773E+02 1.4335E+01 4.6550E+02 2.8768E+01 6.5624E+02 8.3755E+00 

MFO 2.7600E+04 2.2958E+04 5.2878E+02 1.2760E+02 6.2065E+02 9.0276E+00 

WOA 2.6265E+03 2.2704E+03 4.8287E+02 3.7936E+01 6.6610E+02 1.2163E+01 

OBSCA 1.3314E+04 3.6982E+03 7.4406E+02 1.1681E+02 6.4179E+02 5.3000E+00 

MOFOA 2.3974E+04 1.6027E+03 2.4477E+03 2.9760E+02 6.9674E+02 7.1910E+00 



ACWOA 1.4739E+04 4.0293E+03 6.5030E+02 8.2703E+01 6.5993E+02 7.6142E+00 

SCADE 2.3741E+04 5.0809E+03 7.8805E+02 7.7304E+01 6.4445E+02 5.6699E+00 

BWOA 8.6304E+03 2.1872E+03 5.4626E+02 5.1570E+01 6.6004E+02 1.0464E+01 

 F4  F5  F6  

 AVG STD AVG STD AVG STD 

RIME 8.5127E+02 2.0046E+01 9.1350E+02 4.5060E+01 9.7669E+03 7.2068E+03 

PSO 8.8342E+02 1.3673E+01 1.3765E+03 6.3557E+02 1.5013E+06 4.8479E+05 

GWO 8.5186E+02 2.1133E+01 1.1571E+03 2.0110E+02 1.3579E+06 3.9496E+06 

HHO 8.8755E+02 1.4853E+01 2.6827E+03 2.5926E+02 7.3111E+04 3.6572E+04 

MFO 8.9933E+02 2.6147E+01 3.0454E+03 1.1593E+03 2.1059E+07 6.4873E+07 

WOA 9.1585E+02 3.7539E+01 3.3978E+03 1.0776E+03 8.9521E+03 6.7427E+03 

OBSCA 9.4101E+02 9.4386E+00 2.3867E+03 4.1922E+02 4.5139E+07 2.9076E+07 

MOFOA 9.7451E+02 6.8930E+00 3.4482E+03 2.3321E+02 9.1882E+08 9.5393E+07 

ACWOA 9.0576E+02 1.3788E+01 2.6759E+03 3.1354E+02 3.4293E+07 3.1536E+07 

SCADE 9.4845E+02 1.0140E+01 2.5913E+03 4.3276E+02 5.1544E+07 3.8983E+07 

BWOA 8.8734E+02 1.4280E+01 2.5354E+03 2.8778E+02 1.7800E+05 4.3477E+05 

 F7  F8  F9  

 AVG STD AVG STD AVG STD 

RIME 2.0547E+03 3.6427E+01 2.2342E+03 3.6633E+01 2.4808E+03 2.5834E-03 

PSO 2.1225E+03 3.8797E+01 2.2777E+03 6.4717E+01 2.4658E+03 1.3002E-01 

GWO 2.0704E+03 4.3252E+01 2.2485E+03 4.5440E+01 2.5128E+03 2.9008E+01 

HHO 2.1780E+03 6.2871E+01 2.2483E+03 2.8873E+01 2.4868E+03 2.9062E+00 

MFO 2.1455E+03 5.0221E+01 2.2686E+03 4.9206E+01 2.5161E+03 4.5421E+01 

WOA 2.1704E+03 5.2707E+01 2.2566E+03 4.0643E+01 2.4933E+03 1.2047E+01 

OBSCA 2.1399E+03 1.7361E+01 2.2619E+03 1.4017E+01 2.5993E+03 3.5360E+01 

MOFOA 2.2760E+03 2.9909E+01 2.8714E+03 3.1774E+02 3.2038E+03 9.1957E+01 

ACWOA 2.1651E+03 1.9616E+01 2.2441E+03 2.3840E+01 2.5935E+03 4.1206E+01 

SCADE 2.1554E+03 1.6545E+01 2.2455E+03 3.7302E+00 2.5753E+03 2.3996E+01 

BWOA 2.1676E+03 4.1869E+01 2.2632E+03 4.9816E+01 2.5244E+03 2.7121E+01 

 F10  F11  F12  

 AVG STD AVG STD AVG STD 

RIME 2.6054E+03 1.5971E+02 2.7001E+03 1.4206E+02 2.8626E+03 2.4832E+00 

PSO 4.4218E+03 1.0223E+03 2.7234E+03 1.7281E+02 2.8598E+03 3.9629E+01 

GWO 3.1601E+03 6.6270E+02 2.7765E+03 1.5134E+02 2.8653E+03 4.6883E+00 

HHO 3.2932E+03 5.7009E+02 2.8177E+03 1.4081E+02 2.9036E+03 5.6494E+01 

MFO 3.8266E+03 1.0675E+03 2.7688E+03 1.4016E+02 2.8644E+03 1.6924E+00 

WOA 4.1437E+03 1.1801E+03 2.7836E+03 1.6643E+02 2.8847E+03 2.8977E+01 

OBSCA 2.5307E+03 7.8055E+00 2.7671E+03 9.8306E+00 2.8704E+03 1.6653E+00 

MOFOA 6.1321E+03 1.2652E+03 3.3497E+03 1.3646E+02 2.9390E+03 1.5841E+01 

ACWOA 3.3768E+03 1.2027E+03 2.7995E+03 1.6029E+02 2.8918E+03 3.0487E+01 

SCADE 2.5463E+03 9.6190E+00 2.7716E+03 1.0245E+01 2.8694E+03 1.6822E+00 

BWOA 4.6024E+03 1.1425E+03 2.7462E+03 1.2524E+02 2.8802E+03 3.0286E+01 

Similarly, in Table 10, this paper further analyzes the optimization performance of  RIME versus peer 

algorithms in the latest test set using the Wilcoxon signed-rank test. In the new optimization problem, the 

RIME algorithm has the same large advantage over peer optimization algorithms such as PSO and GWO, 

etc. Of  the 12 functions tested, RIME outperforms the other algorithms on at least 8 functions. 



The Friedman test is used in Figure 13 to further assess the experimental outcomes of  the benchmark 

functions. As can be shown, the RIME algorithm consistently has the highest average ranking. RIME 

continues to outperform its peers on new problems, as shown by the study of  the Friedman test and the 

Wilcoxon signed-rank test. 

Table 10. Wilcoxon signed-rank test results of  RIME and peer algorithms in CEC2022 

Algorithms +/−/= Mean Rank 

RIME ~ 1.50  1 

PSO 8/3/1 3.83  2 

GWO 9/0/3 4.00  3 

HHO 12/0/0 5.83  4 

MFO 11/0/1 6.42  6 

WOA 11/0/1 6.67  8 

OBSCA 11/0/1 6.25  5 

MOFOA 12/0/0 10.92  11 

ACWOA 12/0/0 7.33  10 

SCADE 11/0/1 6.75  9 

BWOA 11/0/1 6.50  7 

 

Figure 13. Friedman test results of  RIME and peer algorithms in CEC2022 

Figure 14 shows the convergence curves of  the RIME algorithm and the peer algorithm on the latest 

test set. In the graph of  F1, the RIME algorithm has a clear tendency to jump out of  the local optimum 

after 50,000 iterations, and the final convergence accuracy is the highest. In F3, F5, and F7, RIME finds an 

excellent solution quickly in the initial search stage of  the algorithm and keeps developing on this basis, 

leading to the whole process of  finding the best in both precision and speed. In F8 and F11, the optimization 

problems of  a composite type are very complex, but RIME still has the best convergence accuracy. In 



summary, the RIME algorithm is a very strong metaheuristic that can maintain high accuracy and efficiency 

when dealing with the latest optimization problems. 

 

Figure 14．Convergence curves of  RIME and peer algorithms in CEC2022 

4.3 Parameter sensitivity analysis of  RIME 

In this section, experiments and analyses are conducted in terms of  both the internal parameters of  

the algorithm and parameters common to the metaheuristic algorithm. On the one hand, the key internal 

parameters of  the RIME algorithm are discussed and analyzed to determine the optimality and rationality 

of  the key parameters for the proposed algorithm. On the other hand, the parameters common to the swarm 

intelligence optimization algorithm (including population size, dimension size and evaluation times, etc.) are 

discussed to set appropriate initial values for RIME under different optimization problems.  

4.3.1 Analysis of  critical parameters 

In this section, we change the parameter 𝑤 in Section 3.2 when the soft-rime mechanism acts. This 

parameter is used to control the frequency of  alternating exploration and exploitation and is an important 

parameter affecting the algorithm's overall accuracy and stability. Experiments are conducted with parameters 

𝑤 set to 1, 3, 7, and 10 and compared to the original parameter 𝑤=5 to show the effect of  parameter changes 

in the mechanism on RIME performance. The comparison experiments are performed in a unified 

evaluation framework with the same number of  populations of  30, with 300,000 evaluations and 30 

independent parallelization of  the algorithm. 

Specifically, the value of  𝑤 directly affects the variation of  the rime environment factor 𝛽, as shown in 



Figure 15. As 𝛽 is a step-down function, the value of  𝑤 controls the number of  segments of  the 𝛽 function. 

It can be seen that in Figure 15, as the number of  evaluations (FEs), the value of  𝛽 decreases in a stepwise 

fashion, while different values of  𝑤 have different numbers of  segments. When 𝛽 is constant, the algorithm 

performs a deep exploitation of  the current optimal solution; when 𝛽 is decreasing, the algorithm performs 

a wide range of  searches. Therefore, 𝑤  directly controls the balance of  search and exploitation of  the 

algorithm, and it is important to select an appropriate value. 

 

Figure 15. Effect of  𝑤-value on environmental factor 𝛽 

Table 11 shows the results of  the settings and rankings of  the RIME parameters, where RIME5 is 

ranked first, RIME3 is ranked last, and the average ranking of  RIME5 is also larger than the ranking of  the 

algorithms with other values. Table 12 shows the detailed results of  RIME under the action of  different 

parameters, and it can be seen that each parameter change has a certain impact on RIME. Although RIME5 

is not always the best result, it is stable, so RIME5 does not show poor results in the optimization problem. 

Therefore, considering the accuracy and stability of  the algorithm, the parameter 𝑤 is set to 5 in this paper. 

Table 11. RIME's 𝑤 parameter settings and ranking 

Algorithms RIME1 RIME3 RIME5 RIME7 RIME10 

𝑤-value 1 3 5 7 10 

Mean 3.47  3.93  2.87  3.33  3.67  

rank 3 6 1 2 4 

Table 12. Detailed results for different 𝑤 parameter settings 

Fun Item RIME1 RIME3 RIME5 RIME7 RIME10 

F1 AVG 1.3771E+07 2.0826E+07 1.7098E+07 1.7600E+07 1.3348E+07 
 STD 5.2194E+06 6.0881E+06 7.3208E+06 7.8137E+06 6.5814E+06 

F2 AVG 1.0339E+08 5.4441E+04 8.7692E+04 5.8603E+04 5.2551E+04 



 STD 2.3975E+07 2.5224E+04 3.2832E+04 2.5217E+04 2.6271E+04 

F3 AVG 4.7052E+04 4.2741E+03 4.1681E+03 4.6252E+03 4.6443E+03 
 STD 1.5622E+04 8.5503E+03 4.2476E+03 3.2594E+03 2.3114E+03 

F4 AVG 4.2549E+03 4.1821E+03 3.1954E+03 5.1532E+02 5.4304E+02 
 STD 3.6358E+03 3.2760E+03 2.4985E+03 4.3251E+01 3.7873E+01 

F5 AVG 5.3330E+02 5.2508E+02 5.2917E+02 5.4214E+02 5.2011E+02 
 STD 4.9384E+01 4.1924E+01 3.5648E+01 1.8328E+01 7.1611E-02 

F6 AVG 5.2012E+02 5.2012E+02 5.2011E+02 5.2011E+02 5.2080E+02 
 STD 5.0007E-02 7.4315E-02 6.3149E-02 8.0070E-02 6.1293E-02 

F7 AVG 6.1814E+02 6.1887E+02 6.1705E+02 6.1816E+02 6.1963E+02 
 STD 3.0100E+00 3.0141E+00 3.0517E+00 3.1168E+00 3.7510E+00 

F8 AVG 6.2904E+02 7.0018E+02 7.0025E+02 7.0017E+02 7.0020E+02 
 STD 1.8861E+00 5.3439E-02 6.6353E-02 4.5921E-02 6.5168E-02 

F9 AVG 7.0016E+02 7.0002E+02 8.5942E+02 8.5589E+02 8.6520E+02 
 STD 4.4644E-02 2.4624E-02 1.7029E+01 1.3228E+01 1.6586E+01 

F10 AVG 8.5776E+02 8.5733E+02 8.5147E+02 9.9953E+02 1.0007E+03 
 STD 1.3138E+01 1.6080E+01 6.5711E+00 2.8525E+01 3.1202E+01 

F11 AVG 9.9992E+02 9.9645E+02 1.0067E+03 1.0735E+03 2.3473E+03 
 STD 3.2529E+01 2.9152E+01 2.4468E+01 1.1506E+01 4.8739E+02 

F12 AVG 2.2896E+03 2.2189E+03 2.3268E+03 2.3417E+03 1.9476E+03 
 STD 4.7646E+02 4.1756E+02 4.2746E+02 3.8951E+02 2.0814E+02 

F13 AVG 4.6173E+03 4.1347E+03 4.4599E+03 4.3186E+03 4.5138E+03 
 STD 5.9624E+02 5.5896E+02 5.9060E+02 6.5907E+02 5.6286E+02 

F14 AVG 7.2755E+03 1.2005E+03 1.2004E+03 1.2004E+03 1.2005E+03 
 STD 3.1133E+02 2.1286E-01 1.3729E-01 1.5533E-01 1.7803E-01 

F15 AVG 1.2004E+03 1.2017E+03 1.3005E+03 1.3005E+03 1.3004E+03 
 STD 1.8819E-01 1.5662E-01 1.2073E-01 1.1687E-01 1.0107E-01 

F16 AVG 1.3005E+03 1.3005E+03 1.3005E+03 1.4005E+03 1.4004E+03 
 STD 1.2300E-01 1.1515E-01 5.9578E-02 1.9733E-01 1.3165E-01 

F17 AVG 1.4004E+03 1.4004E+03 1.4005E+03 1.4004E+03 1.5124E+03 
 STD 2.0094E-01 2.1965E-01 2.5315E-01 5.1639E-02 2.9713E+00 

F18 AVG 1.5147E+03 1.5129E+03 1.5135E+03 1.5138E+03 1.5171E+03 
 STD 5.1488E+00 4.5082E+00 5.1424E+00 5.0680E+00 1.0558E+00 

F19 AVG 1.6121E+03 1.6120E+03 1.6117E+03 1.6119E+03 1.6119E+03 
 STD 4.0181E-01 3.6179E-01 6.4710E-01 4.9953E-01 5.9776E-01 

F20 AVG 1.6126E+03 1.3591E+06 1.1503E+06 1.0784E+06 1.0203E+06 
 STD 2.3445E-01 7.4840E+05 5.5064E+05 6.0511E+05 5.3173E+05 

F21 AVG 1.3349E+06 6.0764E+06 1.8485E+04 2.5358E+04 6.6623E+03 
 STD 6.1959E+05 2.5453E+06 5.3372E+04 5.0251E+04 4.8333E+03 

F22 AVG 2.9400E+04 5.5454E+03 2.5776E+05 1.9220E+03 1.9365E+03 
 STD 6.1783E+04 3.3065E+03 2.0412E+05 2.3815E+01 3.3992E+01 

F23 AVG 1.9129E+03 1.9179E+03 1.9222E+03 1.9122E+03 8.2066E+03 
 STD 2.5705E+00 2.1981E+01 2.2562E+01 2.3222E+00 5.1645E+03 

F24 AVG 7.6620E+03 6.4512E+03 7.8151E+03 8.0548E+03 1.2328E+04 
 STD 4.5952E+03 4.2135E+03 4.4068E+03 7.7943E+03 6.2195E+03 

F25 AVG 4.0710E+05 5.8009E+05 5.0839E+05 3.1048E+05 2.9042E+05 
 STD 2.5787E+05 4.0823E+05 3.5050E+05 2.1456E+05 3.0108E+05 

F26 AVG 1.1025E+06 2.6830E+03 2.7222E+03 2.6830E+03 2.7150E+03 
 STD 5.1931E+05 1.4653E+02 1.5612E+02 2.1974E+02 2.5500E+02 

F27 AVG 2.7575E+03 2.6113E+03 2.6181E+03 2.6181E+03 2.6175E+03 



 STD 2.2386E+02 1.2467E+02 1.8639E+00 3.1796E+00 1.8784E+00 

F28 AVG 2.6176E+03 2.6180E+03 2.6152E+03 2.6446E+03 2.6444E+03 
 STD 1.8444E+00 1.5049E+00 1.4847E-03 4.9979E+00 5.3300E+00 

F29 AVG 2.6448E+03 2.6450E+03 2.6475E+03 2.6268E+03 2.7169E+03 
 STD 5.0204E+00 4.7893E+00 2.9708E+00 1.1404E+00 6.0273E+00 

F30 AVG 2.7166E+03 2.7151E+03 2.7158E+03 2.7169E+03 2.7212E+03 
 STD 4.7353E+00 5.8717E+00 4.9039E+00 5.6972E+00 3.0894E+00 

4.3.2 Analysis of  population size and number of  evaluations 

In metaheuristic algorithms, population size and number of  evaluations, etc., as crucial initial setting 

values, also affect the optimization problem's optimization-seeking accuracy and optimization-seeking 

efficiency. Therefore, in this paper, we experiment and analyze the parameter sensitivity of  the RIME 

algorithm by varying the population size and the number of  evaluations utilizing gradient ascent. In this 

section, F13 of  the CEC2017 test set above is used as the test example. The population sizes are set to 5, 10, 

30, 50, 100, and 200, and the number of  evaluations is 5000, 10000, 15000, 20000, 25000, and 30000. 

The test results are shown in Figure 16. It can be seen that the increase in population size will directly 

improve the convergence speed of  RIME and increase the search efficiency of  the algorithm. This 

phenomenon is most apparent when the number of  evaluations is less than 10,000, and the effect is not 

apparent when the number of  evaluations exceeds 10,000. In addition, it can be seen from Figure 16 that 

the increase in the number of  evaluations can help the algorithm find higher-quality solutions, regardless of  

the value of  the population size. Again, this effect becomes minor after a certain level of  evaluation times. 

In summary, the population size and the number of  iterations can significantly impact the RIME 

algorithm. The main impact is on the algorithm's finding accuracy and finding efficiency, which can be 

adjusted according to the actual problem in the application problem.  

 

Figure 16. Effect of  population size and number of  evaluations on RIME  



4.3.3 Analysis of  dimension 

The size of  the dimension represents the different scales of  the problem and is directly related to the 

difficulty of  seeking the optimal. Usually, the larger the dimension of  the problem, the larger the computation 

required by the algorithm, and the unreasonable initial value setting will impact the algorithm's accuracy and 

the ability to jump out of  the local optimum. Therefore, in this paper, RIME dimensionality experiments are 

designed to demonstrate the effect of  dimensionality on RIME. The dimensions are set to 10, 30, 50, and 

100, respectively. The experimental results are shown in Table 13, where RIME10 means the RIME 

dimension size is 10, RIME30 means the dimension size is 30, RIME50 means the dimension size is 50, and 

RIME100 means the dimension size is 100. the population size is fixed at 30, and the evaluation count is 

300,000. It can be seen from Table 13 that the dimension size affects the optimization performance of  RIME. 

On the one hand, this indicates that the advantage of  the RIME algorithm lies in solving optimization 

problems of  lower dimensionality, which can find high precision solutions and higher efficiency of  search in 

low latitude problems. On the other hand, as the problem dimension increases, the RIME algorithm requires 

a more significant computational effort, and the application should pay attention to this characteristic of  the 

algorithm for appropriate parameter settings.  

Table 13. Experimental results of  RIME in different dimensions 

Fun Item RIME10 RIME30 RIME50 RIME100 

F1 AVG 4.3889E+03 5.6126E+03 7.2589E+03 2.1006E+04 
 STD 3.3859E+03 6.3421E+03 7.2484E+03 1.5888E+04 

F2 AVG 2.0000E+02 2.0588E+02 3.4422E+09 7.1291E+52 
 STD 7.2473E-05 1.2964E+01 1.5522E+10 3.8414E+53 

F3 AVG 3.0000E+02 3.0006E+02 4.0194E+02 1.0441E+05 
 STD 6.7059E-08 3.2031E-02 3.7468E+01 1.9908E+04 

F4 AVG 4.0050E+02 4.9471E+02 5.2085E+02 6.8857E+02 
 STD 3.6292E-01 2.1713E+01 5.5933E+01 3.5269E+01 

F5 AVG 5.0799E+02 5.7243E+02 6.6986E+02 9.7173E+02 
 STD 2.8561E+00 2.0630E+01 3.9201E+01 9.4815E+01 

F6 AVG 6.0000E+02 6.0047E+02 6.0528E+02 6.2510E+02 
 STD 3.3529E-04 4.4106E-01 3.4586E+00 5.7129E+00 

F7 AVG 7.1644E+02 8.0626E+02 8.9718E+02 1.2973E+03 
 STD 3.1242E+00 2.0803E+01 2.7021E+01 9.5586E+01 

F8 AVG 8.0829E+02 8.6937E+02 9.7037E+02 1.2589E+03 
 STD 3.1715E+00 2.2368E+01 4.5329E+01 8.0746E+01 

F9 AVG 9.0000E+02 1.0811E+03 2.7054E+03 1.3052E+04 
 STD 5.9359E-08 3.3265E+02 2.1849E+03 5.1119E+03 

F10 AVG 1.3117E+03 4.0348E+03 6.8410E+03 1.5287E+04 
 STD 1.4722E+02 5.9114E+02 8.6270E+02 1.5117E+03 

F11 AVG 1.1053E+03 1.2404E+03 1.4325E+03 3.1316E+03 
 STD 3.6011E+00 5.9501E+01 7.9977E+01 3.6888E+02 

F12 AVG 1.7283E+04 2.0817E+06 1.9033E+07 1.4559E+08 
 STD 1.5067E+04 1.4244E+06 1.0092E+07 4.7147E+07 

F13 AVG 6.8981E+03 2.9927E+04 2.4923E+04 9.5310E+04 
 STD 6.9853E+03 2.3096E+04 1.5549E+04 4.6217E+04 



F14 AVG 1.4113E+03 1.0366E+04 1.1188E+05 1.0045E+06 
 STD 9.2057E+00 5.2389E+03 6.7473E+04 4.6865E+05 

F15 AVG 1.5031E+03 1.5187E+04 1.2545E+04 4.2239E+04 
 STD 2.1856E+00 1.3866E+04 8.5431E+03 1.7314E+04 

F16 AVG 1.7079E+03 2.3438E+03 3.1111E+03 6.0594E+03 
 STD 1.1863E+02 2.1512E+02 4.0906E+02 6.3284E+02 

F17 AVG 1.7381E+03 2.0134E+03 3.0304E+03 5.3656E+03 
 STD 3.8669E+01 1.5394E+02 3.6546E+02 5.3649E+02 

F18 AVG 2.4966E+03 2.0528E+05 6.7584E+05 1.6901E+06 
 STD 1.6424E+03 1.6358E+05 3.8042E+05 8.2535E+05 

F19 AVG 1.9016E+03 1.9008E+04 1.7540E+04 5.3393E+05 
 STD 1.1207E+00 1.8116E+04 1.2772E+04 4.2437E+05 

F20 AVG 2.0158E+03 2.2571E+03 2.9803E+03 5.2621E+03 
 STD 2.5257E+01 1.4836E+02 3.0265E+02 4.7647E+02 

F21 AVG 2.2987E+03 2.3784E+03 2.4667E+03 2.8215E+03 
 STD 3.9348E+01 2.1657E+01 3.8805E+01 9.4717E+01 

F22 AVG 2.3151E+03 4.8311E+03 8.1830E+03 1.7192E+04 
 STD 1.0327E+02 1.2420E+03 8.8264E+02 1.4613E+03 

F23 AVG 2.6031E+03 2.7337E+03 2.9129E+03 3.2768E+03 
 STD 5.7412E+01 2.0839E+01 4.2746E+01 7.3189E+01 

F24 AVG 2.7204E+03 2.9116E+03 3.0770E+03 3.7497E+03 
 STD 7.4921E+01 2.3570E+01 4.4140E+01 7.6257E+01 

F25 AVG 2.9283E+03 2.8962E+03 3.0518E+03 3.3613E+03 
 STD 2.2859E+01 1.6190E+01 3.7850E+01 7.2865E+01 

F26 AVG 2.9620E+03 4.4781E+03 5.6933E+03 1.1034E+04 
 STD 2.5909E+02 2.2332E+02 4.4382E+02 1.0357E+03 

F27 AVG 3.0952E+03 3.2213E+03 3.4330E+03 3.6913E+03 
 STD 1.4660E+01 9.3095E+00 8.3903E+01 1.0106E+02 

F28 AVG 3.2720E+03 3.2106E+03 3.3085E+03 3.4545E+03 
 STD 1.5331E+02 3.3163E+01 2.7570E+01 3.7577E+01 

F29 AVG 3.1699E+03 3.7025E+03 4.3598E+03 7.7233E+03 
 STD 3.5597E+01 1.7956E+02 2.6887E+02 5.3929E+02 

F30 AVG 1.4553E+05 1.9904E+04 3.4576E+06 1.2374E+07 
 STD 3.0712E+05 1.2636E+04 1.1742E+06 3.5045E+06 

To further investigate the effect of  dimensionality on RIME and to demonstrate that RIME still 

maintains the advantage of  optimization performance among peer algorithms under the same dimensionality. 

This section also designs a comparison experiment of  peer algorithms in different dimensions, and the 

experimental results are also statistically verified using the Wilcoxon signed-rank test and the Friedman test. 

The Wilcoxon signed rank and Friedman rank are shown in Table 14 and Figure 17, respectively. Table 14 

shows that RIME ranks first in the dimensions of  10, 30, 50, and 100 for the optimization problem, 

indicating that the RIME algorithm has strong and stable optimization performance in different dimensions. 

In addition, it can be seen that as the dimensionality increases from 10 to 100, the average ranking of  RIME 

becomes more advanced and reaches the highest average ranking in the experiment at dimension 100, which 

indicates that the RIME algorithm has a significant advantage over other algorithms in dealing with high-

dimensional problems. The Friedman rank in Figure 17 also supports the advantages and stability of  RIME. 

In summary, RIME still has powerful performance in different dimensions and can be used to solve 

optimization problems in various dimensions. 



Table 14. Wilcoxon signed-rank of  RIME and peer algorithm in different dimensions 

Dim=10 Dim=30 

 +/−/= Mean Rank  +/−/= Mean Rank 

RIME ~ 1.83 1 RIME ~ 1.63 1 

PSO 24/0/6 4.53 3 PSO 24/2/4 4.80 3 

WOA 30/0/0 7.67 9 WOA 30/0/0 7.47 9 

SCA 30/0/0 8.47 11 SCA 30/0/0 8.27 11 

HHO 29/1/0 5.90 4 HHO 29/0/1 5.50 4 

MFO 30/0/0 6.23 6 MFO 30/0/0 6.60 8 

JAYA 29/1/0 6.40 7 JAYA 29/1/0 6.23 5 

FA 29/1/0 8.13 10 FA 29/0/1 8.13 10 

RFO 23/4/3 6.20 5 RFO 25/3/2 6.37 6 

GWO 23/0/7 4.23 2 GWO 22/0/8 4.53 2 

BA 23/4/3 6.40 7 BA 23/2/5 6.47 7 

Dim=50 Dim=100 

 +/−/= Mean Rank  +/−/= Mean Rank 

RIME ~ 1.63 1 RIME ~ 1.40 1 

PSO 23/1/6 4.73 3 PSO 24/1/5 5.00 3 

WOA 30/0/0 7.67 9 WOA 30/0/0 7.03 8 

SCA 30/0/0 8.27 11 SCA 30/0/0 8.17 10 

HHO 29/0/1 5.17 4 HHO 30/0/0 5.20 4 

MFO 30/0/0 6.63 7 MFO 30/0/0 7.07 9 

JAYA 29/1/0 6.07 5 JAYA 29/1/0 6.00 5 

FA 29/1/0 8.17 10 FA 29/1/0 8.30 11 

RFO 25/4/1 6.53 6 RFO 25/2/3 6.53 6 

GWO 23/1/6 4.47 2 GWO 24/1/5 4.50 2 

BA 24/3/3 6.67 8 BA 24/3/3 6.80 7 



 

Figure 17. Friedman-rank of  RIME and peer algorithm in different dimensions 

4.4 Experiments on engineering design problems 

Real-world engineering problems, such as bin packing problems [67], and neural networks [68, 69], deep 

learning [70], often have multiple feasible solutions, and they include constrained variables that decision-

makers need to decide the best possible (approximated) solutions within the required accuracy [71-73]. This 

section demonstrates the advantages of  the RIME algorithm for practical problems by PVD problem, WBD 

problem, SRD problem, IBD problem, and MDCBD problem. The population size is 50, and the number 

of  iterations of  the method is always set to 2000. 

4.4.1 PVD problem 

In order to achieve the goal of  minimizing the manufacturing cost of  this engineering optimization 

model, the RIME method is used for the PVD problem in this engineering problem, as illustrated in Figure 

18. The PVD problem's inner radius (𝑅), head thickness (𝑇ℎ), shell thickness (𝑇𝑠), and section range less head 

all have unknown values (𝑙). Constrictions that must be met in order to implement the pressurizer model 

must also be met concurrently with the PV model's optimization. The PVD model's linear programming 

equation is as follows. 

Assume：�⃗� = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿] 



𝑚𝑖𝑛   𝑓(�⃗�) = 0.6224 ∗ 𝑥1 ∗ 𝑥3 ∗ 𝑥4 + 1.7781 ∗ 𝑥3 ∗ 𝑥1
2 + 3.1661 ∗ 𝑥4 ∗ 𝑥1

2 + 19.84 ∗ 𝑥3 ∗ 𝑥1
2 

 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 

𝑔1(�⃗�) = −𝑥1 + 0.0193 ∗ 𝑥3 ≤ 0

𝑔2(�⃗�) = −𝑥3 + 0.00954 ∗ 𝑥3 ≤ 0

𝑔3(�⃗�) = −𝜋 ∗ 𝑥4 ∗ 𝑥3
2 −

4

3
∗ 𝜋 ∗ 𝑥3

3 + 1296000 ≤ 0

𝑔4(�⃗�) = 𝑥4 − 240 ≤ 0
0 ≤ 𝑥1 ≤ 99
0 ≤ 𝑥2 ≤ 99
10 ≤ 𝑥3 ≤ 200
10 ≤ 𝑥4 ≤ 200

 

 

Figure 18. PVD problem 

Table 15 shows the RIME algorithm's best result for the PVD model, with the pressurizer being the 

least. In this experiment, the RIME algorithm is compared against ten different algorithms in an identical 

experimental setting. Last but not least, the RIME algorithm outperforms the other algorithms with the best 

outcomes and can better resolve the PVD practice. 

Table 15. Comparison results of  the PVD problem 

Algorithm 
Optimal values for variables Optimum cost 

𝑻𝒔 𝑻𝒉 R L  

RIME 0.8750 0.4375 45.9482 135.3594 6055.5868 
MFO[53] 0.8125 0.4375 42.0984 176.6366 6059.7143 
BA[74] 0.8125 0.4375 42.0984 176.6366 6059.7143 
HPSO[75] 0.8125 0.4375 42.0984 176.6366 6059.7143 
CSS[76] 0.8125 0.4375 42.1036 176.5727 6059.0888 
CPSO[77] 0.8125 0.4375 42.0912 176.7465 6061.0777 
ACO[78] 0.8125 0.4375 42.1036 176.5727 6059.0888 
WOA[32] 0.8125 0.4375 42.0983 176.6390 6059.7410 
MDDE[79] 0.8125 0.4375 42.0984 176.6360 6059.7017 
Branch-bound[80] 1.1250 0.6250 47.7000 117.7010 8129.1036 
NDE[81] 0.8125 0.4375 42.0984 176.6365 6059.7143 



4.4.2 WBD problem 

The objective of this case is to determine the welded beam with the lowest cost given four limitations 

and the key characteristics of shear stress (𝜏), bending stress (𝜃), buckling load (𝑃𝑐) and deflection (𝛿). As 

indicated in Figure 19, this task includes the four variables: welding seam thickness (ℎ); welding joint length 

(𝑙); beam width (𝑡); beam thickness (𝑏). The following is the problem's mathematical model. 

Consider   𝑥→ = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ ℎ 𝑙 𝑡 𝑏] 

Minimize  𝑓(𝑥→) = 1.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0+𝑥4) 

Subject to  𝑔1(𝑥
→) = 𝜏(𝑥→) − 𝜏𝑚𝑎𝑥 ≤ 0 

          𝑔2(𝑥
→) = 𝜎(𝑥→) − 𝜎𝑚𝑎𝑥 ≤ 0 

          𝑔3(𝑥
→) = 𝛿(𝑥→) − 𝛿𝑚𝑎𝑥 ≤ 0 

          𝑔4(𝑥
→) = 𝑥1 − 𝑥4 ≤ 0 

          𝑔5(𝑥
→) = 𝑃 − 𝑃𝐶(𝑥

→) ≤ 0 

          𝑔6(𝑥
→) = 0.125 − 𝑥1 ≤ 0 

          𝑔7(𝑥
→) = 1.10471𝑥1

2 + 0.04811𝑥3𝑥4(14.0+𝑥2) − 5.0 ≤ 0 

Variable range 0.1≤𝑥1 ≤ 2, 0.1≤𝑥2 ≤ 10, 0.1≤𝑥3 ≤ 10, 0.1≤𝑥4 ≤ 2 

where 𝜏(𝑥→) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′′)2 , 𝜏′ =

𝑃

√2𝑥1𝑥2
  𝜏′′ =

𝑀𝑅

𝐽
  𝑀 = 𝑃 (𝐿 +

𝑥2

2
) 

           𝑅 = √
𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2

  

           𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2

]} 

           𝜎(𝑥→) =
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥

→) =
6𝑃𝐿3

𝐸𝑥3
2𝑥4

 

           𝑃𝐶(𝑥
→) =

4.013E√
𝑥3
2𝑥4
6

36

𝐿2
(1 −

𝑥3

2𝐿
√
𝐸

4𝐺
) 

           𝑃 = 60001𝑏, 𝐿 = 14 ∈ ..𝛿𝑚𝑎𝑥 = 0.25 ∈.. 

           𝐸 = 30 × 16𝑝𝑠𝑖, 𝐺 = 12 × 106𝑝𝑠𝑖 

         𝜏𝑚𝑎𝑥 = 13600𝑝𝑠𝑖, 𝜎𝑚𝑎𝑥 = 30000𝑝𝑠𝑖 



 

Figure 19. WBD problem 

Table 16 displays the simulation outcomes for the WBD challenge. The table findings indicate that 

1.722821 is the ideal cost for RIME. Of all the algorithms, RIME has the lowest optimized value. This 

demonstrates that RIME delivers positive outcomes for this technical challenge. 

Table 16. Comparison results of WBD problem between RIME and other approaches 

Algorithm 
Optimal values for variables Optimum 

cost h l t b 

RIME 0.208000 3.250000 9.053702 0.208620 1.722821 

RO[82] 0.203687 3.528467 9.004233 0.207241 1.735344 
SSA[83] 0.205700 3.471400 9.036600 0.205700 1.724910 
CDE[84] 0.203137 3.542998 9.033498 0.206179 1.733462 
GWO[30] 0.205700 3.478400 9.036800 0.205800 1.726240 
GSA[46] 0.182129 3.856979 10.00000 0.202376 1.879950 
NDE[81] 0.205729 3.470488 9.903662 0.205729 1.724852 

4.4.3 SRD problem 

The reduction of the gearbox's weight is the aim of this challenge. As indicated in Figure 20, the reducer's 

weight must be kept as low as possible while still respecting the gear teeth's bending stress and the shaft's 

surface stress. The variable 𝑥1 to 𝑥7  stand for the face width (𝑏), the module of teeth (𝑚), the number of 

teeth in the pinion (𝑧), the length of the first shaft between bearings (𝑙1), the length of the second shaft 

between bearings (𝑙2), and the diameter of the first (𝑑1) and the second shaft (𝑑2), respectively. The 

following is the problem's mathematical model. 

Consider 𝑧 = [𝑧1  𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 ] = [𝑏 𝑚 𝑝 𝑙1 𝑙2 𝑑1 𝑑2], 

Minimize 𝑓(𝑧) = 0.7854𝑧1𝑧2
2(3.3333𝑧3

2 + 14.9334𝑧3 − 43.0934) − 1.508𝑧1(𝑧6
2 + 𝑧7

2) +

7.4777(𝑧6
2 + 𝑧7

2) + 0.7854(𝑧4𝑧6
2 + 𝑧5𝑧7

2) 

Subject to:  

𝑔1(𝑧) =
27

𝑧1𝑧3𝑧2
2 − 1 ≤ 0, 



𝑔2(𝑧) =
397.5

𝑧1𝑧2
2𝑧3
2 − 1 ≤ 0, 

𝑔3(𝑧) =
1.93𝑧4

3

𝑧2𝑧6
4𝑧3
− 1 ≤ 0, 

𝑔4(𝑧) =
1.93𝑧5

3

𝑧2𝑧7
4𝑧3
− 1 ≤ 0, 

𝑔5(𝑧) =
[(745(𝑧4/𝑧2𝑧3))

2
+16.9×106]

1/2

110𝑧6
3 − 1 ≤ 0, 

𝑔6(𝑧) =
[(745(𝑧5/𝑧2𝑧3))

2
+157.5×106]

1/2

85𝑧7
3 − 1 ≤ 0, 

𝑔7(𝑧) =
𝑧2𝑧3

40
− 1 ≤ 0, 

𝑔8(𝑧) =
5𝑧2

𝑧1
− 1 ≤ 0, 

𝑔9(𝑧) =
𝑧1

12𝑧2
− 1 ≤ 0, 

𝑔10(𝑧) =
1.5𝑧6+1.9

𝑧4
− 1 ≤ 0, 

𝑔11(𝑧) =
1.1𝑧7+1.9

𝑧5
− 1 ≤ 0, 

where 2.6 ≤ 𝑧1 ≤ 3.6, 0.7 ≤ 𝑧2 ≤ 0.8, 17 ≤ 𝑧3 ≤ 28, 7.3 ≤ 𝑧4 ≤ 28, 7.3 ≤ 𝑧5 ≤ 8.3, 2.9 ≤ 𝑧6 ≤

3.9, 5.0 ≤ 𝑧7 ≤ 5.5  

 



Figure 20. SRD problem 

The comparative outcomes of the SRD problem are displayed in Table 17. We can see from the table 

that RIME is rated top and has the lowest optimization cost. RIME significantly improves this engineering 

challenge as compared to GWO, PSO, GSA, and SCA. 

Table 17. Comparison results of SRD problem between RIME and other approaches 

Algorithm Optimal values for variables Optimum 
cost z1 z2 z3 z4 z5 z6 z7 

RIME 3.50357 0.7 17 7.3 7.8 3.350230 5.287497 2997.6982 
SCA[85] 3.50875 0.7 17 7.3 7.8 3.461020 5.289213 3030.5630 
GSA[46] 3.60000 0.7 17 8.3 7.8 3.369658 5.289224 3051.1200 
GWO[30] 3.50669 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.2880 
PSO[86] 3.50001 0.7 17 8.3 7.8 3.352412 5.286715 3005.7630 

4.4.4 IBD problem 

As seen in Figure 21, the structural design of  I-beams is the subject of  the second optimization practice. 

This practice aims to get the least amount of  vertical deflection possible during the design phase. The 

question's structural components are length, two thicknesses, and one height. Following are the formulae 

and restrictions for this practice: 

Consider: 

�⃗� = [𝑥1 𝑥2 𝑥3 𝑥4] = [𝑏 ℎ 𝑡𝑤 𝑡𝑓] 

The values of  the above four variables are: 

10 ≤ 𝑥1 ≤ 50 

10 ≤ 𝑥2 ≤ 80 

0.9 ≤ 𝑥3 ≤ 5 

0.9 ≤ 𝑥4 ≤ 5 

Minimize: 

𝑓(�⃗�) =
5000

𝑡𝑤(ℎ − 2𝑡𝑓)
3

12
+
𝑏𝑡𝑓

3

6
+ 2𝑏𝑡𝑓 (

ℎ − 𝑡𝑓
2

)
2
 

Subject to: 

𝑔(�⃗�) = 2𝑏𝑡𝑤 + 𝑡𝑤(ℎ − 2𝑡𝑓) ≤ 0 

 



 

 

Figure 21. IBD problem 

This problem compares RIME with ARSM, SOS, CS, and IARSM. Table 18 contains the comparative 

findings for the IBD problem. The restrictions of this engineering problem are straightforward. As can be 

observed, all algorithms yield comparable outcomes. This suggests that RIME and other effective algorithms 

have the same impact on this practice. 

Table 18. Comparison results of  IBD problem between RIME and other approaches 

Algorithm 
Optimum variables Optimum 

cost b h 𝑡𝑤 𝑡𝑓 

RIME 50.0000 80.0000 0.9000 2.32167 0.01308 
ARSM[87] 37.0500 80.0000 1.7100 2.3100 0.0157 
SOS[88] 50.0000 80.0000 0.9000 2.3218 0.0131 
CS[89] 50.0000 80.0000 0.9000 2.3217 0.0131 
IARSM[87] 48.4200 79.9900 0.9000 2.4000 0.1310 

4.4.5 MDCBD problem 

As illustrated in Figure 22, this design challenge calls for the creation of a multi-disc clutch brake while 

accounting for two factors: the minimal mass of the braking system (𝑓1) and the minimum stop time (𝑇). 

This practice involves five variables: �⃗� = (𝑟𝑖 , 𝑟0, 𝑡, 𝐹, 𝑍), where 𝑟𝑖 is the internal radius, 𝑟0 is the external 

radius, 𝑡 is the thickness of the disc, 𝐹 is the driving force, and 𝑍 represents the number of friction surfaces. 

The five variables mentioned above have the following exact value ranges and are discrete variables. 

𝑟𝑖 = (60~80) 𝑚𝑚 

𝑟0 = (90~110) 𝑚𝑚 

𝑡 = (1, 1.5, 2, 2.5, 3) 

𝐹 = (600, 610, 620, … ,980,990,1000) 



𝑍 = (2~20) 

The formula for this design problem is as follows: 

Minimize: 

𝑓1(�⃗�) = 𝜋(𝑥2
2 − 𝑥1

2)𝑥3(𝑋5 + 1)𝜌 

𝑓2(�⃗�) = 𝑇 =
𝐼𝑧𝜔

𝑀ℎ +𝑀𝑓
 

Subject to: 

𝑔1(�⃗�) = 𝑥2 − 𝑥1 − ∆𝑅 > 0 

𝑔2(�⃗�) = 𝐿𝑚𝑎𝑥 − (𝑥5 + 1)(𝑥3 + 𝛿) ≥ 0 

𝑔3(�⃗�) = 𝑝𝑚𝑎𝑥 − 𝑝𝑟𝑧 ≥ 0 

𝑔4(�⃗�) = 𝑝𝑚𝑎𝑥𝑉𝑠𝑟,𝑚𝑎𝑥 − 𝑝𝑟𝑧𝑉𝑠𝑟 ≥ 0 

𝑔5(�⃗�) = 𝑉𝑠𝑟,𝑚𝑎𝑥 − 𝑉𝑠𝑟 ≥ 0 

𝑔6(�⃗�) = 𝑀ℎ − 𝑠𝑀𝑠 ≥ 0 

𝑔7(�⃗�) = 𝑇 ≥ 0 

𝑔8(�⃗�) = 𝑇𝑚𝑎𝑥 − 𝑇 ≥ 0 

𝑟𝑖,𝑚𝑖𝑛 ≤ 𝑥1 ≤ 𝑟𝑖,𝑚𝑎𝑥  

𝑟𝑜,𝑚𝑖𝑛 ≤ 𝑥2 ≤ 𝑟𝑜,𝑚𝑎𝑥 

𝑡𝑚𝑖𝑛 ≤ 𝑥3 ≤ 𝑡𝑚𝑎𝑥 

0 ≤ 𝑥4 ≤ 𝐹𝑚𝑎𝑥 

2 ≤ 𝑥5 ≤ 𝑍𝑚𝑎𝑥  

The above parameters are as follows: 
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𝐴
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𝑉𝑠ℎ =
𝜋𝑅𝑠𝑟𝑛

30
𝑚𝑚/𝑠  𝑅𝑠𝑟 =

2

3

𝑥2
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3

𝑥2
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2  𝑚𝑚  Δ𝑅 = 20 𝑚𝑚  𝐿𝑚𝑎𝑥 = 30 𝑚𝑚  

𝜇 = 0.5  𝑝𝑚𝑎𝑥 = 1 𝑀𝑃𝑎  𝜌 = 0.0000078 𝑘𝑔/𝑚𝑚3  𝑉𝑠𝑟𝑚𝑎𝑥 = 10 𝑚/𝑠  



𝑠 = 1.5  𝑇𝑚𝑎𝑥 = 15 𝑠  𝑛 = 250 𝑟𝑝𝑚  𝑀𝑠 = 40 𝑁𝑚  

𝑀𝑓 = 3 𝑁𝑚  𝐼𝑧 = 55 𝑘𝑔 ⋅ 𝑚2  𝛿 = 0.5 𝑚𝑚  𝑟𝑖,𝑚𝑖𝑛 = 60 𝑚𝑚  

𝑟𝑖,𝑚𝑎𝑥 = 80 𝑚𝑚  𝑟0,𝑚𝑖𝑛 = 90 𝑚𝑚  𝑟0,𝑚𝑖𝑛 = 110 𝑚𝑚  𝑡𝑚𝑖𝑛 = 1.5 𝑚𝑚  

𝑡𝑚𝑎𝑥 = 3 𝑚𝑚  𝐹𝑚𝑎𝑥 = 1000 𝑁   𝑍𝑚𝑎𝑥 = 9   

 

Figure 22. MDCBD problem 

In this challenge, RIME is contrasted with a number of  algorithms, including CBA, WCA, PVS, and 

TLBO. Table 19 demonstrates that RIME maintains a sizable lead in the MDCBD problem. The effective 

improvement in engineering material use and considerable reduction in engineering material consumption 

demonstrates the great performance and precise search of  RIME. 

Table 19. Comparison results of  MDCBD problem 

Algorithm 
Optimum variables  Optimum 

cost 𝒓𝒊 𝒓𝟎 𝒕  𝑭  𝒁  
RIME 75.0000 95.0000 1.0000 1000.0000 2.0000 0.249945 
CBA[90] 80.0000 90.0000 3.0000 1000.0000 2.0000 0.263684 
WCA[91] 70.0000 90.0000 1.0000 910.0000 3.0000 0.313656 
PVS[92] 70.0000 90.0000 1.0000 980.0000 3.0000 0.313660 
TLBO[93] 70.0000 90.0000 1.0000 810.0000 3.0000 0.313656 



5 Conclusions and future works 

In this study, a new high-performance optimization algorithm based on the rime formation process is 

proposed to solve the complex optimization problems of  today. The RIME algorithm proposes a soft-rime 

search strategy for the search of  the algorithm, mainly by simulating the motion of  soft-rime particles. By 

simulating the crossover behavior between hard-rime agents, the hard-rime puncture mechanism is also 

proposed for the exploitation step of  the algorithm. Finally, the selection mechanism of  the metaheuristic 

algorithm is improved, and the positive greedy selection mechanism is proposed to avoid the local optimum 

trap. In the experiments, this paper is first designed to qualitatively analyze the algorithm using agent 

historical position experiments, particle change experiments, fitness value change experiments, and iterative 

curve experiments to demonstrate the algorithm's characteristics in finding the optimal solution. Then, the 

RIME algorithm is compared with 10 classical algorithms and 10 high-performance algorithms to 

demonstrate the performance advantages of  the RIME algorithm. The set of  functions tested is very 

comprehensive, including unimodal, multimodal, hybrid, and composition functions. The results of  the 

comparisons also illustrate the validity of  the experiments by the Wilcoxon signed-rank test and Friedman 

test. The experimental results show that the RIME algorithm can balance exploration and exploitation better 

and has some advantages over peer algorithms. This paper further determines the parameters of  RIME for 

different optimization problems by analyzing the parameter sensitivity of  the RIME algorithm to ensure its 

performance is maximized. Finally, applying the RIME algorithm to five engineering optimization problems, 

including the PVD problem, WBD problem, SRD problem, IBD problem, and MDCBD problem, shows 

that the algorithm also has a strong potential for practical optimization problems. In summary, the excellent 

performance of  the RIME algorithm can be theoretically attributed to the following points. 

1) The soft-rime search strategy makes the RIME algorithm have a unique ladder 

exploration and exploitation method, which makes the algorithm constantly switch between 

large-scale exploration and small-scale exploitation and can simultaneously take into account 

the breadth and depth when seeking the optimal. 

2) The hard-rime puncture mechanism enables the RIME algorithm to quickly lock the 

global approximate optimal solution and achieve centralized exploitation by the crossover 

between the optimal solution and the current solution, improving the solution's accuracy 

and efficiency. 

3) The positive greedy selection mechanism enables the RIME algorithm to actively 

change the position of  agents while avoiding poor quality solutions from appearing in the 

search population, ensuring the quality of  the entire population after each iteration, 

improving population diversity, and significantly reducing the performance loss of  the 

algorithm. 

In future work, we will develop binary and multi-objective RIME versions for different optimization 

problems. In addition, we will also consider further improving the optimization performance of  RIME itself. 

This algorithm will also solve more engineering problems or problems in other fields. 
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